Your browser doesn't support javascript.
loading
Bayesian dose-finding phase I trial design incorporating historical data from a preceding trial.
Takeda, Kentaro; Morita, Satoshi.
Afiliação
  • Takeda K; Data Science, Astellas Pharma Global Development, Inc., Illinois, USA.
  • Morita S; Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Pharm Stat ; 17(4): 372-382, 2018 07.
Article em En | MEDLINE | ID: mdl-29372582
We consider the problem of incorporating historical data from a preceding trial to design and conduct a subsequent dose-finding trial in a possibly different population of patients. In oncology, for example, after a phase I dose-finding trial is completed in Caucasian patients, investigators often conduct a further phase I trial to determine the maximum tolerated dose in Asian patients. This may be due to concerns about possible differences in treatment tolerability between populations. In this study, we propose to adaptively incorporate historical data into prior distributions assumed in a new dose-finding trial. Our proposed approach aims to appropriately borrow strength from a previous trial to improve the maximum tolerated dose determination in another patient population. We define a "historical-to-current (H-C)" parameter representing the degree of borrowing based on a retrospective analysis of previous trial data. In simulation studies, we examine the operating characteristics of the proposed method in comparison with 3 alternative approaches and assess how the H-C parameter functions across a variety of realistic settings.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Simulação por Computador / Modelos Estatísticos / Teorema de Bayes / Ensaios Clínicos Fase I como Assunto / Dose Máxima Tolerável / Antineoplásicos Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Pharm Stat Assunto da revista: FARMACOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Simulação por Computador / Modelos Estatísticos / Teorema de Bayes / Ensaios Clínicos Fase I como Assunto / Dose Máxima Tolerável / Antineoplásicos Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Pharm Stat Assunto da revista: FARMACOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos