Conjugation of phosphonoacetic acid to nucleobase promotes a mechanism-based inhibition.
J Enzyme Inhib Med Chem
; 33(1): 384-389, 2018 Dec.
Article
em En
| MEDLINE
| ID: mdl-29372656
Small molecule inhibitors have a powerful blocking action on viral polymerases. The bioavailability of the inhibitor, nevertheless, often raise a significant selectivity constraint and may substantially limit the efficacy of therapy. Phosphonoacetic acid has long been known to possess a restricted potential to block DNA biosynthesis. In order to achieve a better affinity, this compound has been linked with natural nucleotide at different positions. The structural context of the resulted conjugates has been found to be crucial for the acquisition by DNA polymerases. We show that nucleobase-conjugated phosphonoacetic acid is being accepted, but this alters the processivity of DNA polymerases. The data presented here not only provide a mechanistic rationale for a switch in the mode of DNA synthesis, but also highlight the nucleobase-targeted nucleotide functionalization as a route for enhancing the specificity of small molecule inhibitors.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Ácido Fosfonoacéticos
/
DNA Polimerase Dirigida por DNA
/
Inibidores Enzimáticos
/
Nucleotídeos
Idioma:
En
Revista:
J Enzyme Inhib Med Chem
Assunto da revista:
BIOQUIMICA
/
QUIMICA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Lituânia