Your browser doesn't support javascript.
loading
mir-374-5p, mir-379-5p, and mir-503-5p Regulate Proliferation and Hypertrophic Differentiation of Growth Plate Chondrocytes in Male Rats.
Jee, Youn Hee; Wang, Jinhee; Yue, Shanna; Jennings, Melissa; Clokie, Samuel J; Nilsson, Ola; Lui, Julian C; Baron, Jeffrey.
Afiliação
  • Jee YH; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
  • Wang J; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
  • Yue S; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
  • Jennings M; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
  • Clokie SJ; Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom.
  • Nilsson O; Karolinska Institutet, Department of Women's and Children's Health, Stockholm, Sweden.
  • Lui JC; Örebro University, Department of Medical Sciences, Örebro, Sweden.
  • Baron J; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
Endocrinology ; 159(3): 1469-1478, 2018 03 01.
Article em En | MEDLINE | ID: mdl-29390136
ABSTRACT
Growth plate chondrocytes undergo sequential differentiation to form the resting zone, the proliferative zone (PZ), and the hypertrophic zone (HZ). The important role of microRNAs (miRNAs) in the growth plate was previously revealed by cartilage-specific ablation of Dicer, an enzyme essential for biogenesis of many miRNAs. To identify specific miRNAs that regulate differentiation of PZ chondrocytes to HZ chondrocytes, we microdissected individual growth plate zones from juvenile rats and performed miRNA profiling using a solution hybridization method and miRNA sequencing. Thirty-four miRNAs were differentially expressed between the PZ and the HZ, and we hypothesized that some of the miRNAs that are preferentially expressed in the PZ may promote proliferation and inhibit hypertrophic differentiation. Consistent with this hypothesis, transfection of inhibitors for four of these miRNAs (mir-369-3p, mir-374-5p, mir-379-5p, and mir-503-5p) decreased proliferation in primary epiphyseal chondrocytes. The inhibitors for three of these miRNAs (mir-374-5p, mir-379-5p, and mir-503-5p) also increased expression of multiple genes that are associated with chondrocyte hypertrophic differentiation. We next hypothesized that preferential expression of these miRNAs in the PZ is driven by the parathyroid hormone-related protein (PTHrP) concentration gradient across the growth plate. Consistent with this hypothesis, treatment of primary chondrocytes with a parathyroid hormone (PTH)/PTHrP receptor agonist, PTH1-34, increased expression of mir-374-5p, mir-379-5p, and mir-503-5p. Taken together, our findings suggest that the PTHrP concentration gradient across the growth plate induces differential expression of mir-374-5p, mir-379-5p, and mir-503-5p between the PZ and the HZ. In the PZ, the higher expression levels of these miRNAs promote proliferation and inhibit hypertrophic differentiation. In the HZ, downregulation of these miRNAs inhibits proliferation and promotes hypertrophic differentiation.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diferenciação Celular / Condrócitos / MicroRNAs / Proliferação de Células / Lâmina de Crescimento / Hipertrofia Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Endocrinology Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diferenciação Celular / Condrócitos / MicroRNAs / Proliferação de Células / Lâmina de Crescimento / Hipertrofia Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Endocrinology Ano de publicação: 2018 Tipo de documento: Article