Your browser doesn't support javascript.
loading
Differential Pharmacology and Binding of mGlu2 Receptor Allosteric Modulators.
O'Brien, Daniel E; Shaw, Douglas M; Cho, Hyekyung P; Cross, Alan J; Wesolowski, Steven S; Felts, Andrew S; Bergare, Jonas; Elmore, Charles S; Lindsley, Craig W; Niswender, Colleen M; Conn, P Jeffrey.
Afiliação
  • O'Brien DE; Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative
  • Shaw DM; Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative
  • Cho HP; Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative
  • Cross AJ; Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative
  • Wesolowski SS; Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative
  • Felts AS; Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative
  • Bergare J; Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative
  • Elmore CS; Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative
  • Lindsley CW; Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative
  • Niswender CM; Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative
  • Conn PJ; Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery (D.E.O., D.M.S., H.P.C., A.S.F., C.W.L, C.M.N., P.J.C.), Vanderbilt Brain Institute (P.J.C.), and Vanderbilt Kennedy Center (C.M.N., P.J.C.), Vanderbilt University, Nashville, Tennessee; AstraZeneca Neuroscience Innovative
Mol Pharmacol ; 93(5): 526-540, 2018 05.
Article em En | MEDLINE | ID: mdl-29545267
ABSTRACT
Allosteric modulation of metabotropic glutamate receptor 2 (mGlu2) has demonstrated efficacy in preclinical rodent models of several brain disorders, leading to industry and academic drug discovery efforts. Although the pharmacology and binding sites of some mGlu2 allosteric modulators have been characterized previously, questions remain about the nature of the allosteric mechanism of cooperativity with glutamate and whether structurally diverse allosteric modulators bind in an identical manner to specific allosteric sites. To further investigate the in vitro pharmacology of mGlu2 allosteric modulators, we developed and characterized a novel mGlu2 positive allosteric modulator (PAM) radioligand in parallel with functional studies of a structurally diverse set of mGlu2 PAMs and negative allosteric modulators (NAMs). Using an operational model of allosterism to analyze the functional data, we found that PAMs affect both the affinity and efficacy of glutamate at mGlu2, whereas NAMs predominantly affect the efficacy of glutamate in our assay system. More importantly, we found that binding of a novel mGlu2 PAM radioligand was inhibited by multiple structurally diverse PAMs and NAMs, indicating that they may bind to the mGlu2 allosteric site labeled with the novel mGlu2 PAM radioligand; however, further studies suggested that these allosteric modulators do not all interact with the radioligand in an identical manner. Together, these findings provide new insights into the binding sites and modes of efficacy of different structurally and functionally distinct mGlu2 allosteric modulators and suggest that different ligands either interact with distinct sites or adapt different binding poses to shared allosteric site(s).
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptores de Glutamato Metabotrópico Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Pharmacol Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptores de Glutamato Metabotrópico Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Pharmacol Ano de publicação: 2018 Tipo de documento: Article