Your browser doesn't support javascript.
loading
Xenograft of Human Umbilical Mesenchymal Stem Cells from Wharton's Jelly Differentiating into Osteocytes and Reducing Osteoclast Activity Reverses Osteoporosis in Ovariectomized Rats.
Fu, Yu-Show; Lu, Chia-Hui; Chu, Kuo-An; Yeh, Chang-Ching; Chiang, Tung-Lin; Ko, Tsui-Ling; Chiu, Mei-Miao; Chen, Cheng-Fong.
Afiliação
  • Fu YS; 1 Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China.
  • Lu CH; 2 Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China.
  • Chu KA; These authors made equal contributions to this manuscript.
  • Yeh CC; 3 Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China.
  • Chiang TL; 4 Department of Internal Medicine, Division of Chest Medicine, Kaohsiung Veterans General Hospital, Taiwan, Republic of China.
  • Ko TL; These authors made equal contributions to this manuscript.
  • Chiu MM; 5 Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China.
  • Chen CF; 6 Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China.
Cell Transplant ; 27(1): 194-208, 2018 01.
Article em En | MEDLINE | ID: mdl-29562774
We examined the effects of human umbilical cord-derived mesenchymal stem cells (HUMSCs) in Wharton's jelly on ovariectomy (OVX)-induced osteoporosis by using in vitro and in vivo experiments. Two months after OVX, the rats gained weight and had a decreased serum estradiol level . Both micro-computed tomography (micro-CT) and histochemical analyses revealed a marked decrease in the bone volume (BV) and collagen content within the head, neck, and distal condyle of the femur, indicating that the osteoporosis animal model was successfully established 2 mo after bilateral OVX. Subsequently, 2.5 × 106 HUMSCs were injected into the bone marrow cavity of the left femurs 2 mo after OVX. The rats were divided into the following groups: normal + phosphate-buffered saline (PBS), normal + HUMSCs, OVX + PBS, and OVX + HUMSCs. Two months after transplantation, both micro-CT imaging and histochemical staining revealed that the normal + HUMSCs group had higher BV and collagen content in the epiphysis and metaphysis than did the normal + PBS group. In the OVX + HUMSCs group, a substantial increase in the rod-shaped trabecular bone and the abundant accumulation of collagen were observed around the site of HUMSC transplantation. Plenty of transplanted HUMSCs remained viable and differentiated into osteoblasts. In addition, HUMSC transplantation reduced the number of osteoclasts. Compared with HUMSCs cultured alone, HUMSCs cocultured with osteoblasts showed that the percentage of cells differentiating into osteoblasts significantly increased. Furthermore, osteoclasts cocultured with HUMSCs had significantly decreased cellular activity and differentiation capability. HUMSC transplantation into the distal femur of OVX rats could locally stimulate osteocalcin synthesis, increase the trabecular bone, and inhibit osteoclast activity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Geleia de Wharton / Células-Tronco Mesenquimais Limite: Animals / Female / Humans Idioma: En Revista: Cell Transplant Assunto da revista: TRANSPLANTE Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Geleia de Wharton / Células-Tronco Mesenquimais Limite: Animals / Female / Humans Idioma: En Revista: Cell Transplant Assunto da revista: TRANSPLANTE Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China