Your browser doesn't support javascript.
loading
Occupational functional plasticity revealed by brain entropy: A resting-state fMRI study of seafarers.
Wang, Nizhuan; Wu, Huijun; Xu, Min; Yang, Yang; Chang, Chunqi; Zeng, Weiming; Yan, Hongjie.
Afiliação
  • Wang N; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
  • Wu H; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, 518060, China.
  • Xu M; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
  • Yang Y; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, 518060, China.
  • Chang C; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
  • Zeng W; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, 518060, China.
  • Yan H; Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, 518057, China.
Hum Brain Mapp ; 39(7): 2997-3004, 2018 07.
Article em En | MEDLINE | ID: mdl-29676512
Recently, functional magnetic resonance imaging (fMRI) has been increasingly used to assess brain function. Brain entropy is an effective model for evaluating the alteration of brain complexity. Specifically, the sample entropy (SampEn) provides a feasible solution for revealing the brain's complexity. Occupation is one key factor affecting the brain's activity, but the neuropsychological mechanisms are still unclear. Thus, in this article, based on fMRI and a brain entropy model, we explored the functional complexity changes engendered by occupation factors, taking the seafarer as an example. The whole-brain entropy values of two groups (i.e., the seafarers and the nonseafarers) were first calculated by SampEn and followed by a two-sample t test with AlphaSim correction (p < .05). We found that the entropy of the orbital-frontal gyrus (OFG) and superior temporal gyrus (STG) in the seafarers was significantly higher than that of the nonseafarers. In addition, the entropy of the cerebellum in the seafarers was lower than that of the nonseafarers. We conclude that (1) the lower entropy in the cerebellum implies that the seafarers' cerebellum activity had strong regularity and consistency, suggesting that the seafarer's cerebellum was possibly more specialized by the long-term career training; (2) the higher entropy in the OFG and STG possibly demonstrated that the seafarers had a relatively decreased capability for emotion control and auditory information processing. The above results imply that the seafarer occupation indeed impacted the brain's complexity, and also provided new neuropsychological evidence of functional plasticity related to one's career.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Lobo Temporal / Cerebelo / Córtex Pré-Frontal / Entropia / Neuroimagem Funcional / Plasticidade Neuronal / Ocupações Tipo de estudo: Prognostic_studies Limite: Adult / Humans / Male / Middle aged Idioma: En Revista: Hum Brain Mapp Assunto da revista: CEREBRO Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Lobo Temporal / Cerebelo / Córtex Pré-Frontal / Entropia / Neuroimagem Funcional / Plasticidade Neuronal / Ocupações Tipo de estudo: Prognostic_studies Limite: Adult / Humans / Male / Middle aged Idioma: En Revista: Hum Brain Mapp Assunto da revista: CEREBRO Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China