Your browser doesn't support javascript.
loading
Chemotherapy-Induced Long Non-coding RNA 1 Promotes Metastasis and Chemo-Resistance of TSCC via the Wnt/ß-Catenin Signaling Pathway.
Lin, Zhaoyu; Sun, Lijuan; Xie, Shule; Zhang, Shanyi; Fan, Song; Li, Qunxing; Chen, Weixiong; Pan, Guokai; Wang, Weiwei; Weng, Bin; Zhang, Zhang; Liu, Bodu; Li, Jinsong.
Afiliação
  • Lin Z; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
  • Sun L; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
  • Xie S; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
  • Zhang S; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
  • Fan S; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
  • Li Q; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
  • Chen W; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
  • Pan G; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
  • Wang W; Department of Stomatology, Zibo Center Hospital, Zi Bo 255001, China.
  • Weng B; Department of Pathology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637600, China.
  • Zhang Z; Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Liu B; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. Electronic address: liuleopold@gmail.com.
  • Li J; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China. Elec
Mol Ther ; 26(6): 1494-1508, 2018 06 06.
Article em En | MEDLINE | ID: mdl-29699939
ABSTRACT
Increasing evidence has shown that chemo-resistance is related to the process of epithelial-mesenchymal transition (EMT) and increased invasiveness by tongue squamous cell carcinoma (TSCC) cells. Long non-coding RNAs (lncRNAs) play pivotal roles in tumor metastasis and progression. However, the roles and mechanisms of lncRNAs in cisplatin-resistance-induced EMT and metastasis are not well understood. In this study, a chemotherapy-induced lncRNA 1 (CILA1) was discovered by using microarrays and was functionally identified as a regulator of chemo-sensitivity in TSCC cells. Upregulation of CILA1 promotes EMT, invasiveness, and chemo-resistance in TSCC cells, whereas the inhibition of CILA1 expression induces mesenchymal-epithelial transition (MET) and chemo-sensitivity, and inhibits the invasiveness of cisplatin-resistant cells both in vitro and in vivo. We also found that CILA1 exerts its functions via the activation of the Wnt/ß-catenin signaling pathway. High CILA1 expression levels and low levels of phosphorylated ß-catenin were closely associated with cisplatin resistance and advanced disease stage, and were predictors of poor prognosis in TSCC patients. These findings provided a new biomarker for the chemo-sensitivity of TSCC tumors and a therapeutic target for TSCC treatment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Língua / Beta Catenina / Transição Epitelial-Mesenquimal / Via de Sinalização Wnt / RNA Longo não Codificante / Antineoplásicos Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Male Idioma: En Revista: Mol Ther Assunto da revista: BIOLOGIA MOLECULAR / TERAPEUTICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Língua / Beta Catenina / Transição Epitelial-Mesenquimal / Via de Sinalização Wnt / RNA Longo não Codificante / Antineoplásicos Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Male Idioma: En Revista: Mol Ther Assunto da revista: BIOLOGIA MOLECULAR / TERAPEUTICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China