Your browser doesn't support javascript.
loading
Optimizing the synthetic nitrogen rate to balance residual nitrate and crop yield in a leguminous green-manured wheat cropping system.
Yao, Zhiyuan; Zhang, Dabin; Yao, Pengwei; Zhao, Na; Li, Yangyang; Zhang, Suiqi; Zhai, Bingnian; Huang, Donglin; Ma, Aisheng; Zuo, Yajie; Cao, Weidong; Gao, Yajun.
Afiliação
  • Yao Z; College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China.
  • Zhang D; College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China.
  • Yao P; College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China.
  • Zhao N; Bayannaoer Academy of Agricultural and Animal Sciences, 015000 Bayannaoer, Inner Mongolia, China.
  • Li Y; Institute of Soil and Water Conservation, CAS & MWR, 712100 Yangling, Shaanxi, China.
  • Zhang S; Institute of Soil and Water Conservation, CAS & MWR, 712100 Yangling, Shaanxi, China.
  • Zhai B; College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China.
  • Huang D; College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China.
  • Ma A; College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China.
  • Zuo Y; College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China.
  • Cao W; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, China.
  • Gao Y; College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China; Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, 712100 Yangling, Shaanxi, China. Electronic address: yajungao@nwsuaf.edu.cn.
Sci Total Environ ; 631-632: 1234-1242, 2018 Aug 01.
Article em En | MEDLINE | ID: mdl-29727948
Nitrate that originates from agriculture is linked to a series of deleterious environmental consequences that are closely related to human health. Therefore, it is vital to design cropping systems that can produce acceptable crop yields while minimizing the impact of surplus soil nitrate. To develop quantitative estimations, data from 2008 to 2016 were evaluated using multiple regression models. A split-plot field experiment was conducted, with the main treatments of growing Huai bean, soybean and mung bean in summer as leguminous green manure (LGM) while fallow as the control. Four synthetic N rates (0, 108, 135 and 162kgha-1) were applied as sub-treatments at wheat seeding. The N accumulation for LGMs ranged from 61 to 90kgha-1, and that of Huai bean was 46% higher than the average value of soybean and mung bean (P<0.05). The threshold of total N for wheat to produce the highest yields was 141kgha-1. For the LGM treatments, residual nitrate accumulated below the root-zone soil was not significantly increased even when their total N inputs were higher than that of fallow with 162kgha-1 of synthetic N. The estimated nitrate-holding capacity of the root-zone soil for the LGM treatments ranged from 104 to 117kgha-1, and the corresponding synthetic N limits were 97-130kgha-1. Considering the target of producing high wheat yields while keeping the residual nitrate in the root-zone soil, the optimal synthetic N rates for LGM treatments were 52-80kgha-1. In conclusion, growing LGMs can maintain high crop yield and mitigate the environmental impact of residual nitrate by substantially replacing the synthetic N to avoid nitrate leaching to deeper soils.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Agricultura / Nitratos / Nitrogênio Idioma: En Revista: Sci Total Environ Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Agricultura / Nitratos / Nitrogênio Idioma: En Revista: Sci Total Environ Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China