Your browser doesn't support javascript.
loading
Low Dose X-Ray Speckle Visibility Spectroscopy Reveals Nanoscale Dynamics in Radiation Sensitive Ionic Liquids.
Verwohlt, Jan; Reiser, Mario; Randolph, Lisa; Matic, Aleksandar; Medina, Luis Aguilera; Madsen, Anders; Sprung, Michael; Zozulya, Alexey; Gutt, Christian.
Afiliação
  • Verwohlt J; Department Physik, Universität Siegen, D-57072 Siegen, Germany.
  • Reiser M; Department Physik, Universität Siegen, D-57072 Siegen, Germany.
  • Randolph L; European X-Ray Free-Electron Laser Facility, D-22869 Schenefeld, Germany.
  • Matic A; Department Physik, Universität Siegen, D-57072 Siegen, Germany.
  • Medina LA; Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden.
  • Madsen A; Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden.
  • Sprung M; European X-Ray Free-Electron Laser Facility, D-22869 Schenefeld, Germany.
  • Zozulya A; Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany.
  • Gutt C; European X-Ray Free-Electron Laser Facility, D-22869 Schenefeld, Germany.
Phys Rev Lett ; 120(16): 168001, 2018 Apr 20.
Article em En | MEDLINE | ID: mdl-29756927
X-ray radiation damage provides a serious bottleneck for investigating microsecond to second dynamics on nanometer length scales employing x-ray photon correlation spectroscopy. This limitation hinders the investigation of real time dynamics in most soft matter and biological materials which can tolerate only x-ray doses of kGy and below. Here, we show that this bottleneck can be overcome by low dose x-ray speckle visibility spectroscopy. Employing x-ray doses of 22-438 kGy and analyzing the sparse speckle pattern of count rates as low as 6.7×10^{-3} per pixel, we follow the slow nanoscale dynamics of an ionic liquid (IL) at the glass transition. At the prepeak of nanoscale order in the IL, we observe complex dynamics upon approaching the glass transition temperature T_{G} with a freezing in of the alpha relaxation and a multitude of millisecond local relaxations existing well below T_{G}. We identify this fast relaxation as being responsible for the increasing development of nanoscale order observed in ILs at temperatures below T_{G}.

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Alemanha