Low Dose X-Ray Speckle Visibility Spectroscopy Reveals Nanoscale Dynamics in Radiation Sensitive Ionic Liquids.
Phys Rev Lett
; 120(16): 168001, 2018 Apr 20.
Article
em En
| MEDLINE
| ID: mdl-29756927
X-ray radiation damage provides a serious bottleneck for investigating microsecond to second dynamics on nanometer length scales employing x-ray photon correlation spectroscopy. This limitation hinders the investigation of real time dynamics in most soft matter and biological materials which can tolerate only x-ray doses of kGy and below. Here, we show that this bottleneck can be overcome by low dose x-ray speckle visibility spectroscopy. Employing x-ray doses of 22-438 kGy and analyzing the sparse speckle pattern of count rates as low as 6.7×10^{-3} per pixel, we follow the slow nanoscale dynamics of an ionic liquid (IL) at the glass transition. At the prepeak of nanoscale order in the IL, we observe complex dynamics upon approaching the glass transition temperature T_{G} with a freezing in of the alpha relaxation and a multitude of millisecond local relaxations existing well below T_{G}. We identify this fast relaxation as being responsible for the increasing development of nanoscale order observed in ILs at temperatures below T_{G}.
Texto completo:
1
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
Idioma:
En
Revista:
Phys Rev Lett
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Alemanha