A Highly Stable Two-Dimensional Copper(II) Organic Framework for Proton Conduction and Ammonia Impedance Sensing.
Chemistry
; 24(42): 10829-10839, 2018 Jul 25.
Article
em En
| MEDLINE
| ID: mdl-29790210
This work reports the design and fabrication of a proton conductive 2D metal-organic framework (MOF), [Cu(p-IPhHIDC)]n (1) (p-IPhH3 IDC=2-(p-N-imidazol-1-yl)-phenyl-1 H-imidazole-4,5-dicarboxylic acid) as an advanced ammonia impedance sensor at room temperature and 68-98 % relative humidity (RH). MOF 1 shows the optimized proton conductivity value of 1.51×10-3 â
S cm-1 at 100 °C and 98 % RH. Its temperature-dependent and humidity-dependent proton conduction properties have been explored. The large amount of uncoordinated carboxylate groups between the layers plays a vital role in the resultant conductivity. Distinctly, the fabricated MOF-based sensor displays the required stability toward NH3 , enhanced sensitivity, and notable selectivity for NH3 gas. At room temperature and 68 % RH, it gives a remarkable gas response of 8620 % to 130â
ppm NH3 gas and lower detection limit of 2â
ppm towards NH3 gas. It is also found that the gas response of the ammonia sensor increases linearly with the increase of NH3 gas concentration under 68-98 % RH and room temperature. Moreover, the sensor indicates excellent reversibility and selectivity toward NH3 versus N2 , H2 , O2 , CO, CO2 , benzene, and MeOH. Based on structural analyses, activation energy calculations, water and NH3 vapor absorptions, and PXRD determinations, proton conduction and NH3 sensing mechanisms are suggested.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Revista:
Chemistry
Assunto da revista:
QUIMICA
Ano de publicação:
2018
Tipo de documento:
Article