Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low-Pressure Vapor-Assisted Solution Process.
Adv Mater
; 30(30): e1801401, 2018 Jul.
Article
em En
| MEDLINE
| ID: mdl-29883002
The fabrication of multidimensional organometallic halide perovskite via a low-pressure vapor-assisted solution process is demonstrated for the first time. Phenyl ethyl-ammonium iodide (PEAI)-doped lead iodide (PbI2 ) is first spin-coated onto the substrate and subsequently reacts with methyl-ammonium iodide (MAI) vapor in a low-pressure heating oven. The doping ratio of PEAI in MAI-vapor-treated perovskite has significant impact on the crystalline structure, surface morphology, grain size, UV-vis absorption and photoluminescence spectra, and the resultant device performance. Multiple photoluminescence spectra are observed in the perovskite film starting with high PEAI/PbI2 ratio, which suggests the coexistence of low-dimensional perovskite (PEA2 MAn-1 Pbn I3n+1 ) with various values of n after vapor reaction. The dimensionality of the as-fabricated perovskite film reveals an evolution from 2D, hybrid 2D/3D to 3D structure when the doping level of PEAI/PbI2 ratio varies from 2 to 0. Scanning electron microscopy images and Kelvin probe force microscopy mapping show that the PEAI-containing perovskite grain is presumably formed around the MAPbI3 perovskite grain to benefit MAPbI3 grain growth. The device employing perovskite with PEAI/PbI2 = 0.05 achieves a champion power conversion efficiency of 19.10% with an open-circuit voltage of 1.08 V, a current density of 21.91 mA cm-2 , and a remarkable fill factor of 80.36%.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Óxidos
/
Titânio
/
Compostos de Cálcio
Idioma:
En
Revista:
Adv Mater
Assunto da revista:
BIOFISICA
/
QUIMICA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Taiwan