Your browser doesn't support javascript.
loading
On-demand release of Candida albicans biofilms from urinary catheters by mechanical surface deformation.
Maskarinec, Stacey A; Parlak, Zehra; Tu, Qing; Levering, Vrad; Zauscher, Stefan; López, Gabriel P; Fowler, Vance G; Perfect, John R.
Afiliação
  • Maskarinec SA; a Division of Infectious Diseases and International Health , Duke University Medical Center , Durham , NC , USA.
  • Parlak Z; b Mechanical Engineering & Materials Science , Duke University , Durham , NC , USA.
  • Tu Q; b Mechanical Engineering & Materials Science , Duke University , Durham , NC , USA.
  • Levering V; c Biomedical Engineering , Duke University , Durham , NC , USA.
  • Zauscher S; b Mechanical Engineering & Materials Science , Duke University , Durham , NC , USA.
  • López GP; d Chemical and Biological Engineering , University of New Mexico , Albuquerque , NM , USA.
  • Fowler VG; a Division of Infectious Diseases and International Health , Duke University Medical Center , Durham , NC , USA.
  • Perfect JR; e Duke Clinical Research Institute , Durham , NC , USA.
Biofouling ; 34(6): 595-604, 2018 07.
Article em En | MEDLINE | ID: mdl-29897277
ABSTRACT
Candida albicans is a leading cause of catheter-associated urinary tract infections and elimination of these biofilm-based infections without antifungal agents would constitute a significant medical advance. A novel urinary catheter prototype that utilizes on-demand surface deformation is effective at eliminating bacterial biofilms and here the broader applicability of this prototype to remove fungal biofilms has been demonstrated. C. albicans biofilms were debonded from prototypes by selectively inflating four additional intralumens surrounding the main lumen of the catheters to provide the necessary surface strain to remove the adhered biofilm. Deformable catheters eliminated significantly more biofilm than the controls (>90% eliminated vs 10% control; p < 0.001). Mechanical testing revealed that fungal biofilms have an elastic modulus of 45 ± 6.7 kPa with a fracture energy of 0.4-2 J m-2. This study underscores the potential of mechanical disruption as a materials design strategy to combat fungal device-associated infections.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Candida albicans / Biofilmes / Cateteres Urinários Limite: Humans Idioma: En Revista: Biofouling Assunto da revista: BIOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Candida albicans / Biofilmes / Cateteres Urinários Limite: Humans Idioma: En Revista: Biofouling Assunto da revista: BIOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos