Your browser doesn't support javascript.
loading
Dysfunctional Autism Risk Genes Cause Circuit-Specific Connectivity Deficits With Distinct Developmental Trajectories.
Zerbi, Valerio; Ielacqua, Giovanna D; Markicevic, Marija; Haberl, Matthias Georg; Ellisman, Mark H; A-Bhaskaran, Arjun; Frick, Andreas; Rudin, Markus; Wenderoth, Nicole.
Afiliação
  • Zerbi V; Neural Control of Movement Lab, HEST, ETH Zürich, Winterthurerstrasse 190, Zurich, Switzerland.
  • Ielacqua GD; Institute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Str. 27, Zurich, Switzerland.
  • Markicevic M; Neural Control of Movement Lab, HEST, ETH Zürich, Winterthurerstrasse 190, Zurich, Switzerland.
  • Haberl MG; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA.
  • Ellisman MH; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA.
  • A-Bhaskaran A; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
  • Frick A; INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France.
  • Rudin M; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France.
  • Wenderoth N; INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France.
Cereb Cortex ; 28(7): 2495-2506, 2018 07 01.
Article em En | MEDLINE | ID: mdl-29901787
Autism spectrum disorders (ASD) are a set of complex neurodevelopmental disorders for which there is currently no targeted therapeutic approach. It is thought that alterations of genes regulating migration and synapse formation during development affect neural circuit formation and result in aberrant connectivity within distinct circuits that underlie abnormal behaviors. However, it is unknown whether deviant developmental trajectories are circuit-specific for a given autism risk-gene. We used MRI to probe changes in functional and structural connectivity from childhood to adulthood in Fragile-X (Fmr1-/y) and contactin-associated (CNTNAP2-/-) knockout mice. Young Fmr1-/y mice (30 days postnatal) presented with a robust hypoconnectivity phenotype in corticocortico and corticostriatal circuits in areas associated with sensory information processing, which was maintained until adulthood. Conversely, only small differences in hippocampal and striatal areas were present during early postnatal development in CNTNAP2-/- mice, while major connectivity deficits in prefrontal and limbic pathways developed between adolescence and adulthood. These findings are supported by viral tracing and electron micrograph approaches and define 2 clearly distinct connectivity endophenotypes within the autism spectrum. We conclude that the genetic background of ASD strongly influences which circuits are most affected, the nature of the phenotype, and the developmental time course of the associated changes.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transtorno Autístico / Encéfalo / Proteína do X Frágil da Deficiência Intelectual / Proteínas de Membrana / Proteínas do Tecido Nervoso / Vias Neurais Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: Cereb Cortex Assunto da revista: CEREBRO Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Suíça

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transtorno Autístico / Encéfalo / Proteína do X Frágil da Deficiência Intelectual / Proteínas de Membrana / Proteínas do Tecido Nervoso / Vias Neurais Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: Cereb Cortex Assunto da revista: CEREBRO Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Suíça