Your browser doesn't support javascript.
loading
Human cathepsins K, L, and S: Related proteases, but unique fibrinolytic activity.
Douglas, Simone A; Lamothe, Sarah E; Singleton, Tatiyanna S; Averett, Rodney D; Platt, Manu O.
Afiliação
  • Douglas SA; Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, USA. Electronic address: sdouglas7@gatech.edu.
  • Lamothe SE; Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, USA. Electronic address: slamothe@gatech.edu.
  • Singleton TS; Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, USA. Electronic address: tsingleton6@gatech.edu.
  • Averett RD; School of Chemical, Materials, and Biomedical Engineering, University of Georgia, USA. Electronic address: raverett@uga.edu.
  • Platt MO; Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University, USA. Electronic address: manu.platt@bme.gatech.edu.
Biochim Biophys Acta Gen Subj ; 1862(9): 1925-1932, 2018 09.
Article em En | MEDLINE | ID: mdl-29944896
ABSTRACT

BACKGROUND:

Fibrin formation and dissolution are attributed to cascades of protease activation concluding with thrombin activation, and plasmin proteolysis for fibrin breakdown. Cysteine cathepsins are powerful proteases secreted by endothelial cells and others during cardiovascular disease and diabetes. Their fibrinolytic activity and putative role in hemostasis has not been well described.

METHODS:

Fibrin gels were polymerized and incubated with recombinant human cathepsins (cat) K, L, or S, or plasmin, for dose-dependent and time-dependent studies. Dissolution of fibrin gels was imaged. SDS-PAGE was used to resolve cleaved fragments released from fibrin gels and remnant insoluble fibrin gel that was solubilized prior to electrophoresis to assess fibrin α, ß, and γ polypeptide hydrolysis by cathepsins. Multiplex cathepsin zymography determined active amounts of cathepsins remaining.

RESULTS:

There was significant loss of α and ß fibrin polypeptides after incubation with cathepsins, with catS completely dissolving fibrin gel by 24 h. Binding to fibrin stabilized catL active time; it associated with cleaved fibrin fragments of multiple sizes. This was not observed for catK or S. CatS also remained active for longer times during fibrin incubation, but its association/binding did not withstand SDS-PAGE preparation.

CONCLUSIONS:

Human cathepsins K, L, and S are fibrinolytic, and specifically can degrade the α and ß fibrin polypeptide chains, generating fragments unique from plasmin. GENERAL

SIGNIFICANCE:

Demonstration of cathepsins K, L, and S fibrinolytic activity leads to further investigation of contributory roles in disrupting vascular hemostasis, or breakdown of fibrin-based engineered vascular constructs where non-plasmin mediated fibrinolysis must be considered.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fibrina / Catepsinas / Fibrinolisina / Catepsina K / Catepsina L Limite: Humans Idioma: En Revista: Biochim Biophys Acta Gen Subj Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fibrina / Catepsinas / Fibrinolisina / Catepsina K / Catepsina L Limite: Humans Idioma: En Revista: Biochim Biophys Acta Gen Subj Ano de publicação: 2018 Tipo de documento: Article