A Decision-Support Tool for Renal Mass Classification.
J Digit Imaging
; 31(6): 929-939, 2018 12.
Article
em En
| MEDLINE
| ID: mdl-29980960
We investigate the viability of statistical relational machine learning algorithms for the task of identifying malignancy of renal masses using radiomics-based imaging features. Features characterizing the texture, signal intensity, and other relevant metrics of the renal mass were extracted from multiphase contrast-enhanced computed tomography images. The recently developed formalism of relational functional gradient boosting (RFGB) was used to learn human-interpretable models for classification. Experimental results demonstrate that RFGB outperforms many standard machine learning approaches as well as the current diagnostic gold standard of visual qualification by radiologists.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Tomografia Computadorizada por Raios X
/
Técnicas de Apoio para a Decisão
/
Tomada de Decisão Clínica
/
Aprendizado de Máquina
/
Neoplasias Renais
Tipo de estudo:
Observational_studies
/
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
J Digit Imaging
Assunto da revista:
DIAGNOSTICO POR IMAGEM
/
INFORMATICA MEDICA
/
RADIOLOGIA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Estados Unidos