Your browser doesn't support javascript.
loading
A Decision-Support Tool for Renal Mass Classification.
Kunapuli, Gautam; Varghese, Bino A; Ganapathy, Priya; Desai, Bhushan; Cen, Steven; Aron, Manju; Gill, Inderbir; Duddalwar, Vinay.
Afiliação
  • Kunapuli G; UtopiaCompression Corporation, 11150 W Olympic Blvd. Suite #820, Los Angeles, CA, 90064, USA. gautam@utopiacompression.com.
  • Varghese BA; Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, 2nd Floor, Los Angeles, CA, 90033, USA.
  • Ganapathy P; UtopiaCompression Corporation, 11150 W Olympic Blvd. Suite #820, Los Angeles, CA, 90064, USA.
  • Desai B; Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, 2nd Floor, Los Angeles, CA, 90033, USA.
  • Cen S; Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, 2nd Floor, Los Angeles, CA, 90033, USA.
  • Aron M; Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA, 90033, USA.
  • Gill I; Institute of Urology, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90089, USA.
  • Duddalwar V; Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, 2nd Floor, Los Angeles, CA, 90033, USA.
J Digit Imaging ; 31(6): 929-939, 2018 12.
Article em En | MEDLINE | ID: mdl-29980960
We investigate the viability of statistical relational machine learning algorithms for the task of identifying malignancy of renal masses using radiomics-based imaging features. Features characterizing the texture, signal intensity, and other relevant metrics of the renal mass were extracted from multiphase contrast-enhanced computed tomography images. The recently developed formalism of relational functional gradient boosting (RFGB) was used to learn human-interpretable models for classification. Experimental results demonstrate that RFGB outperforms many standard machine learning approaches as well as the current diagnostic gold standard of visual qualification by radiologists.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Tomografia Computadorizada por Raios X / Técnicas de Apoio para a Decisão / Tomada de Decisão Clínica / Aprendizado de Máquina / Neoplasias Renais Tipo de estudo: Observational_studies / Prognostic_studies Limite: Humans Idioma: En Revista: J Digit Imaging Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Tomografia Computadorizada por Raios X / Técnicas de Apoio para a Decisão / Tomada de Decisão Clínica / Aprendizado de Máquina / Neoplasias Renais Tipo de estudo: Observational_studies / Prognostic_studies Limite: Humans Idioma: En Revista: J Digit Imaging Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos