Your browser doesn't support javascript.
loading
Escherichia coli Sequence Type 410 Is Causing New International High-Risk Clones.
Roer, Louise; Overballe-Petersen, Søren; Hansen, Frank; Schønning, Kristian; Wang, Mikala; Røder, Bent L; Hansen, Dennis S; Justesen, Ulrik S; Andersen, Leif P; Fulgsang-Damgaard, David; Hopkins, Katie L; Woodford, Neil; Falgenhauer, Linda; Chakraborty, Trinad; Samuelsen, Ørjan; Sjöström, Karin; Johannesen, Thor B; Ng, Kim; Nielsen, Jens; Ethelberg, Steen; Stegger, Marc; Hammerum, Anette M; Hasman, Henrik.
Afiliação
  • Roer L; Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
  • Overballe-Petersen S; Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
  • Hansen F; Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
  • Schønning K; Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark.
  • Wang M; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
  • Røder BL; Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark.
  • Hansen DS; Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark.
  • Justesen US; Department of Clinical Microbiology, Herlev and Gentofte Hospital, Herlev, Denmark.
  • Andersen LP; Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark.
  • Fulgsang-Damgaard D; Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.
  • Hopkins KL; Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.
  • Woodford N; Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark.
  • Falgenhauer L; Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, United Kingdom.
  • Chakraborty T; Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, United Kingdom.
  • Samuelsen Ø; Institute of Medical Microbiology, Justus Liebig University Giessen and German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany.
  • Sjöström K; Institute of Medical Microbiology, Justus Liebig University Giessen and German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany.
  • Johannesen TB; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
  • Ng K; Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway.
  • Nielsen J; Public Health Agency of Sweden, Stockholm, Sweden.
  • Ethelberg S; Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
  • Stegger M; Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
  • Hammerum AM; Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark.
  • Hasman H; Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark.
mSphere ; 3(4)2018 07 18.
Article em En | MEDLINE | ID: mdl-30021879
ABSTRACT
Escherichia coli sequence type 410 (ST410) has been reported worldwide as an extraintestinal pathogen associated with resistance to fluoroquinolones, third-generation cephalosporins, and carbapenems. In the present study, we investigated national epidemiology of ST410 E. coli isolates from Danish patients. Furthermore, E. coli ST410 was investigated in a global context to provide further insight into the acquisition of the carbapenemase genes blaOXA-181 and blaNDM-5 of this successful lineage. From 127 whole-genome-sequenced isolates, we reconstructed an evolutionary framework of E. coli ST410 which portrays the antimicrobial-resistant clades B2/H24R, B3/H24Rx, and B4/H24RxC. The B2/H24R and B3/H24Rx clades emerged around 1987, concurrently with the C1/H30R and C2/H30Rx clades in E. coli ST131. B3/H24Rx appears to have evolved by the acquisition of the extended-spectrum ß-lactamase (ESBL)-encoding gene blaCTX-M-15 and an IncFII plasmid, encoding IncFIA and IncFIB. Around 2003, the carbapenem-resistant clade B4/H24RxC emerged when ST410 acquired an IncX3 plasmid carrying a blaOXA-181 carbapenemase gene. Around 2014, the clade B4/H24RxC acquired a second carbapenemase gene, blaNDM-5, on a conserved IncFII plasmid. From an epidemiological investigation of 49 E. coli ST410 isolates from Danish patients, we identified five possible regional outbreaks, of which one outbreak involved nine patients with blaOXA-181- and blaNDM-5-carrying B4/H24RxC isolates. The accumulated multidrug resistance in E. coli ST410 over the past two decades, together with its proven potential of transmission between patients, poses a high risk in clinical settings, and thus, E. coli ST410 should be considered a lineage with emerging "high-risk" clones, which should be monitored closely in the future.IMPORTANCE Extraintestinal pathogenic Escherichia coli (ExPEC) is the main cause of urinary tract infections and septicemia. Significant attention has been given to the ExPEC sequence type ST131, which has been categorized as a "high-risk" clone. High-risk clones are globally distributed clones associated with various antimicrobial resistance determinants, ease of transmission, persistence in hosts, and effective transmission between hosts. The high-risk clones have enhanced pathogenicity and cause severe and/or recurrent infections. We show that clones of the E. coli ST410 lineage persist and/or cause recurrent infections in humans, including bloodstream infections. We found evidence of ST410 being a highly resistant globally distributed lineage, capable of patient-to-patient transmission causing hospital outbreaks. Our analysis suggests that the ST410 lineage should be classified with the potential to cause new high-risk clones. Thus, with the clonal expansion over the past decades and increased antimicrobial resistance to last-resort treatment options, ST410 needs to be monitored prospectively.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Evolução Molecular / Infecções por Escherichia coli / Escherichia coli Extraintestinal Patogênica / Genótipo Tipo de estudo: Etiology_studies / Observational_studies / Prevalence_studies / Risk_factors_studies Limite: Humans País/Região como assunto: Europa Idioma: En Revista: MSphere Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Dinamarca

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Evolução Molecular / Infecções por Escherichia coli / Escherichia coli Extraintestinal Patogênica / Genótipo Tipo de estudo: Etiology_studies / Observational_studies / Prevalence_studies / Risk_factors_studies Limite: Humans País/Região como assunto: Europa Idioma: En Revista: MSphere Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Dinamarca