Your browser doesn't support javascript.
loading
Amplification and Suppression of Distinct Brainwide Activity Patterns by Catecholamines.
van den Brink, Ruud L; Nieuwenhuis, Sander; Donner, Tobias H.
Afiliação
  • van den Brink RL; Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany, r.van-den-brink@uke.de.
  • Nieuwenhuis S; Institute of Psychology, Leiden University, 2333AK Leiden, The Netherlands.
  • Donner TH; Leiden Institute for Brain and Cognition, 2333AK Leiden, The Netherlands.
J Neurosci ; 38(34): 7476-7491, 2018 08 22.
Article em En | MEDLINE | ID: mdl-30037827
ABSTRACT
The widely projecting catecholaminergic (norepinephrine and dopamine) neurotransmitter systems profoundly shape the state of neuronal networks in the forebrain. Current models posit that the effects of catecholaminergic modulation on network dynamics are homogeneous across the brain. However, the brain is equipped with a variety of catecholamine receptors with distinct functional effects and heterogeneous density across brain regions. Consequently, catecholaminergic effects on brainwide network dynamics might be more spatially specific than assumed. We tested this idea through the analysis of fMRI measurements performed in humans (19 females, 5 males) at "rest" under pharmacological (atomoxetine-induced) elevation of catecholamine levels. We used a linear decomposition technique to identify spatial patterns of correlated fMRI signal fluctuations that were either increased or decreased by atomoxetine. This yielded two distinct spatial patterns, each expressing reliable and specific drug effects. The spatial structure of both fluctuation patterns resembled the spatial distribution of the expression of catecholamine receptor genes α1 norepinephrine receptors (for the fluctuation pattern placebo > atomoxetine), D2-like dopamine receptors (pattern atomoxetine > placebo), and ß norepinephrine receptors (for both patterns, with correlations of opposite sign). We conclude that catecholaminergic effects on the forebrain are spatially more structured than traditionally assumed and at least in part explained by the heterogeneous distribution of various catecholamine receptors. Our findings link catecholaminergic effects on large-scale brain networks to low-level characteristics of the underlying neurotransmitter systems. They also provide key constraints for the development of realistic models of neuromodulatory effects on large-scale brain network dynamics.SIGNIFICANCE STATEMENT The catecholamines norepinephrine and dopamine are an important class of modulatory neurotransmitters. Because of the widespread and diffuse release of these neuromodulators, it has commonly been assumed that their effects on neural interactions are homogeneous across the brain. Here, we present results from the human brain that challenge this view. We pharmacologically increased catecholamine levels and imaged the effects on the spontaneous covariations between brainwide fMRI signals at "rest." We identified two distinct spatial patterns of covariations one that was amplified and another that was suppressed by catecholamines. Each pattern was associated with the heterogeneous spatial distribution of the expression of distinct catecholamine receptor genes. Our results provide novel insights into the catecholaminergic modulation of large-scale human brain dynamics.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Catecolaminas / Conectoma Tipo de estudo: Clinical_trials / Prognostic_studies Limite: Female / Humans / Male Idioma: En Revista: J Neurosci Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Catecolaminas / Conectoma Tipo de estudo: Clinical_trials / Prognostic_studies Limite: Female / Humans / Male Idioma: En Revista: J Neurosci Ano de publicação: 2018 Tipo de documento: Article