Your browser doesn't support javascript.
loading
Electrochemical Generation and Spectroscopic Characterization of the Key Rhodium(III) Hydride Intermediates of Rhodium Poly(bipyridyl) H2-Evolving Catalysts.
Castillo, Carmen E; Stoll, Thibaut; Sandroni, Martina; Gueret, Robin; Fortage, Jérôme; Kayanuma, Megumi; Daniel, Chantal; Odobel, Fabrice; Deronzier, Alain; Collomb, Marie-Noëlle.
Afiliação
  • Castillo CE; Univ. Grenoble Alpes, CNRS, DCM , F-38000 Grenoble , France.
  • Stoll T; Univ. Grenoble Alpes, CNRS, DCM , F-38000 Grenoble , France.
  • Sandroni M; Univ. Grenoble Alpes, CNRS, DCM , F-38000 Grenoble , France.
  • Gueret R; Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES 38000 Grenoble , France.
  • Fortage J; Univ. Grenoble Alpes, CNRS, DCM , F-38000 Grenoble , France.
  • Kayanuma M; Univ. Grenoble Alpes, CNRS, DCM , F-38000 Grenoble , France.
  • Daniel C; Laboratoire de Chimie Quantique , Institut de Chimie Strasbourg, UMR 7177 CNRS/UdS , 1-4 Rue Blaise pascal , 67037 Strasbourg , France.
  • Odobel F; Laboratoire de Chimie Quantique , Institut de Chimie Strasbourg, UMR 7177 CNRS/UdS , 1-4 Rue Blaise pascal , 67037 Strasbourg , France.
  • Deronzier A; CEISAM , Université de Nantes, CNRS , 2 rue de la Houssinière , 44322 Nantes Cedex 3 , France.
  • Collomb MN; Univ. Grenoble Alpes, CNRS, DCM , F-38000 Grenoble , France.
Inorg Chem ; 57(17): 11225-11239, 2018 Sep 04.
Article em En | MEDLINE | ID: mdl-30129361
ABSTRACT
We previously reported that the [RhIII(dmbpy)2Cl2]+ (dmbpy = 4,4'-dimethyl-2,2'-bipyridine) complex is an efficient H2-evolving catalyst in water when used in a molecular homogeneous photocatalytic system for hydrogen production with [RuII(bpy)3]2+ (bpy = 2,2'-bipyridine) as photosensitizer and ascorbic acid as sacrificial electron donor. The catalysis is believed to proceed via a two-electron reduction of the Rh(III) catalyst into the square-planar [RhI(dmbpy)2]+, which reacts with protons to form a Rh(III) hydride intermediate that can, in turn, release H2 following different pathways. To improve the current knowledge of these key intermediate species for H2 production, we performed herein a detailed electrochemical investigation of the [RhIII(dmbpy)2Cl2]+ and [RhIII(dtBubpy)2Cl2]+ (dtBubpy = 4,4'-di- tert-butyl-2,2'-bipyridine) complexes in CH3CN, which is a more appropriate medium than water to obtain reliable electrochemical data. The low-valent [RhI(Rbpy)2]+ and, more importantly, the hydride [RhIII(Rbpy)2(H)Cl]+ species (R = dm or dtBu) were successfully electrogenerated by bulk electrolysis and unambiguously spectroscopically characterized. The quantitative formation of the hydrides was achieved in the presence of weak proton sources (HCOOH or CF3CO3H), owing to the fast reaction of the electrogenerated [RhI(Rbpy)2]+ species with protons. Interestingly, the hydrides are more difficult to reduce than the initial Rh(III) bis-chloro complexes by ∼310-340 mV. Besides, 0.5 equiv of H2 is generated through their electrochemical reduction, showing that Rh(III) hydrides are the initial catalytic molecular species for hydrogen evolution. Density functional theory calculations were also performed for the dmbpy derivative. The optimized structures and the theoretical absorption spectra were calculated for the initial bis-chloro complex and for the various rhodium intermediates involved in the H2 evolution process.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2018 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2018 Tipo de documento: Article País de afiliação: França