Your browser doesn't support javascript.
loading
Fluorescent resonance energy transfer -based biosensor for detecting conformational changes of Pin1.
Hidaka, Masafumi; Okabe, Emiko; Hatakeyama, Kodai; Zook, Heather; Uchida, Chiyoko; Uchida, Takafumi.
Afiliação
  • Hidaka M; Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba, Sendai, Miyagi, 980-0845, Japan.
  • Okabe E; Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba, Sendai, Miyagi, 980-0845, Japan.
  • Hatakeyama K; Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba, Sendai, Miyagi, 980-0845, Japan.
  • Zook H; Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba, Sendai, Miyagi, 980-0845, Japan.
  • Uchida C; Department of Human Development and Culture, Fukushima University, Kanayagawa 1, Fukushima, Fukushima, 960-1296, Japan.
  • Uchida T; Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba, Sendai, Miyagi, 980-0845, Japan. Electronic address: uchidataka@gmail.com.
Biochem Biophys Res Commun ; 505(2): 399-404, 2018 10 28.
Article em En | MEDLINE | ID: mdl-30262141
Pin1, a peptidyl prolyl cis/trans isomerase (PPIase), regulates the activity and stability of various phosphorylated proteins. Pin1 consists of a PPIase domain and WW domain, both of which are required for the function of Pin1. However, how the behavior of these domains changes upon binding to phosphorylated proteins has not been analyzed. We created a Fluorescent Resonance Energy Transfer (FRET)-based biosensor "CPinY", which is composed of Pin1 flanked by CFP and YFP, and analyzed the interaction between Pin1 and c-Myc. Our results indicated that the dual phosphorylation of c-Myc at Thr58 and Ser62 is essential for tight interaction with Pin1. Additionally, this interaction caused a significant conformational change in Pin1. Our CPinY biosensor also detected a novel type of inhibitor of Pin1 function. We believe that his biosensor will be a novel drug screening technology targeting Pin1.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Peptidilprolil Isomerase de Interação com NIMA Limite: Humans Idioma: En Revista: Biochem Biophys Res Commun Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Peptidilprolil Isomerase de Interação com NIMA Limite: Humans Idioma: En Revista: Biochem Biophys Res Commun Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Japão