Your browser doesn't support javascript.
loading
A high temperature gas flow environment for neutron total scattering studies of complex materials.
Olds, Daniel; Mills, Rebecca A; McDonnell, Marshall T; Liu, Jue; Kim, Joshua R; Dunstan, Matthew T; Gaultois, Michael W; Everett, S Michelle; Tucker, Matthew G; Page, Katharine.
Afiliação
  • Olds D; Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6454, USA.
  • Mills RA; Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6454, USA.
  • McDonnell MT; Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6454, USA.
  • Liu J; Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6454, USA.
  • Kim JR; Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6454, USA.
  • Dunstan MT; Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
  • Gaultois MW; Leverhulme Research Centre for Functional Materials Design, The Materials Innovation Factory, Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, United Kingdom.
  • Everett SM; Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6454, USA.
  • Tucker MG; Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6454, USA.
  • Page K; Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6454, USA.
Rev Sci Instrum ; 89(9): 092906, 2018 Sep.
Article em En | MEDLINE | ID: mdl-30278690
We present the design and capabilities of a high temperature gas flow environment for neutron diffraction and pair distribution function studies available at the Nanoscale Ordered Materials Diffractometer instrument at the Spallation Neutron Source. Design considerations for successful total scattering studies are discussed, and guidance for planning experiments, preparing samples, and correcting and reducing data is defined. The new capabilities are demonstrated with an in situ decomposition study of a battery electrode material under inert gas flow and an in operando carbonation/decarbonation experiment under reactive gas flow. This capability will aid in identifying and quantifying the atomistic configurations of chemically reactive species and their influence on underlying crystal structures. Furthermore, studies of reaction kinetics and growth pathways in a wide variety of functional materials can be performed across a range of length scales spanning the atomic to the nanoscale.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos