Your browser doesn't support javascript.
loading
Systematic High-Accuracy Prediction of Electron Affinities for Biological Quinones.
Schulz, Christine E; Dutta, Achintya Kumar; Izsák, Róbert; Pantazis, Dimitrios A.
Afiliação
  • Schulz CE; Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, 44780, Bochum, Germany.
  • Dutta AK; Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany.
  • Izsák R; Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
  • Pantazis DA; Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany.
J Comput Chem ; 39(29): 2439-2451, 2018 11 05.
Article em En | MEDLINE | ID: mdl-30281169
Quinones play vital roles as electron carriers in fundamental biological processes; therefore, the ability to accurately predict their electron affinities is crucial for understanding their properties and function. The increasing availability of cost-effective implementations of correlated wave function methods for both closed-shell and open-shell systems offers an alternative to density functional theory approaches that have traditionally dominated the field despite their shortcomings. Here, we define a benchmark set of quinones with experimentally available electron affinities and evaluate a range of electronic structure methods, setting a target accuracy of 0.1 eV. Among wave function methods, we test various implementations of coupled cluster (CC) theory, including local pair natural orbital (LPNO) approaches to canonical and parameterized CCSD, the domain-based DLPNO approximation, and the equations-of-motion approach for electron affinities, EA-EOM-CCSD. In addition, several variants of canonical, spin-component-scaled, orbital-optimized, and explicitly correlated (F12) Møller-Plesset perturbation theory are benchmarked. Achieving systematically the target level of accuracy is challenging and a composite scheme that combines canonical CCSD(T) with large basis set LPNO-based extrapolation of correlation energy proves to be the most accurate approach. Methods that offer comparable performance are the parameterized LPNO-pCCSD, the DLPNO-CCSD(T0 ), and the orbital optimized OO-SCS-MP2. Among DFT methods, viable practical alternatives are only the M06 and the double hybrids, but the latter should be employed with caution because of significant basis set sensitivity. A highly accurate yet cost-effective DLPNO-based coupled cluster approach is used to investigate the methoxy conformation effect on the electron affinities of ubiquinones found in photosynthetic bacterial reaction centers. © 2018 Wiley Periodicals, Inc.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Teoria Quântica / Quinonas / Elétrons Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Comput Chem Assunto da revista: QUIMICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Teoria Quântica / Quinonas / Elétrons Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Comput Chem Assunto da revista: QUIMICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Alemanha