Your browser doesn't support javascript.
loading
Rapid T1 quantification from high resolution 3D data with model-based reconstruction.
Maier, Oliver; Schoormans, Jasper; Schloegl, Matthias; Strijkers, Gustav J; Lesch, Andreas; Benkert, Thomas; Block, Tobias; Coolen, Bram F; Bredies, Kristian; Stollberger, Rudolf.
Afiliação
  • Maier O; Institute of Medical Engineering, Graz University of Technology, Graz, Austria.
  • Schoormans J; BioTechMed-Graz, Graz, Austria.
  • Schloegl M; Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam Zuidoost, The Netherlands.
  • Strijkers GJ; Institute of Medical Engineering, Graz University of Technology, Graz, Austria.
  • Lesch A; BioTechMed-Graz, Graz, Austria.
  • Benkert T; Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam Zuidoost, The Netherlands.
  • Block T; Institute of Medical Engineering, Graz University of Technology, Graz, Austria.
  • Coolen BF; BioTechMed-Graz, Graz, Austria.
  • Bredies K; Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, New York.
  • Stollberger R; Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York.
Magn Reson Med ; 81(3): 2072-2089, 2019 03.
Article em En | MEDLINE | ID: mdl-30346053
ABSTRACT

PURPOSE:

Magnetic resonance imaging protocols for the assessment of quantitative information suffer from long acquisition times since multiple measurements in a parametric dimension are required. To facilitate the clinical applicability, accelerating the acquisition is of high importance. To this end, we propose a model-based optimization framework in conjunction with undersampling 3D radial stack-of-stars data. THEORY AND

METHODS:

High resolution 3D T1 maps are generated from subsampled data by employing model-based reconstruction combined with a regularization functional, coupling information from the spatial and parametric dimension, to exploit redundancies in the acquired parameter encodings and across parameter maps. To cope with the resulting non-linear, non-differentiable optimization problem, we propose a solution strategy based on the iteratively regularized Gauss-Newton method. The importance of 3D-spectral regularization is demonstrated by a comparison to 2D-spectral regularized results. The algorithm is validated for the variable flip angle (VFA) and inversion recovery Look-Locker (IRLL) method on numerical simulated data, MRI phantoms, and in vivo data.

RESULTS:

Evaluation of the proposed method using numerical simulations and phantom scans shows excellent quantitative agreement and image quality. T1 maps from accelerated 3D in vivo measurements, e.g. 1.8 s/slice with the VFA method, are in high accordance with fully sampled reference reconstructions.

CONCLUSIONS:

The proposed algorithm is able to recover T1 maps with an isotropic resolution of 1 mm3 from highly undersampled radial data by exploiting structural similarities in the imaging volume and across parameter maps.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Encéfalo / Imageamento por Ressonância Magnética / Imageamento Tridimensional Tipo de estudo: Guideline / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Áustria

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Encéfalo / Imageamento por Ressonância Magnética / Imageamento Tridimensional Tipo de estudo: Guideline / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Áustria