Your browser doesn't support javascript.
loading
Erinacine Facilitates the Opening of the Mitochondrial Permeability Transition Pore Through the Inhibition of the PI3K/ Akt/GSK-3ß Signaling Pathway in Human Hepatocellular Carcinoma.
Zhou, Li-Jie; Mo, Yan-Bo; Bu, Xuan; Wang, Jian-Jun; Bai, Jing; Zhang, Jun-Wei; Cheng, Ai-Bin; Ma, Ji-Hong; Wang, Yi-Wei; Xie, Yu-Xi.
Afiliação
  • Zhou LJ; The Affiliated Hospital of North China University of Science and Technology, Tangshan, China.
  • Mo YB; Department of Gastroenterology, the Affiliated Hospital of North China University of Science and Technology, Tangshan, China.
  • Bu X; Department of Critical Care Medicine, the Affiliated Hospital of North China University of Science and Technology, Tangshan, China.
  • Wang JJ; Department of Critical Care Medicine, the Affiliated Hospital of North China University of Science and Technology, Tangshan, China.
  • Bai J; Department of Critical Care Medicine, the Affiliated Hospital of North China University of Science and Technology, Tangshan, China.
  • Zhang JW; Department of Critical Care Medicine, the Affiliated Hospital of North China University of Science and Technology, Tangshan, China.
  • Cheng AB; Department of Critical Care Medicine, the Affiliated Hospital of North China University of Science and Technology, Tangshan, China.
  • Ma JH; The Affiliated Hospital of North China University of Science and Technology, Tangshan, China.
  • Wang YW; The Affiliated Hospital of North China University of Science and Technology, Tangshan, China.
  • Xie YX; Department of Critical Care Medicine, the Affiliated Hospital of North China University of Science and Technology, Tangshan, China.
Cell Physiol Biochem ; 50(3): 851-867, 2018.
Article em En | MEDLINE | ID: mdl-30355923
ABSTRACT
BACKGROUND/

AIMS:

Erinacine, which is extracted from the medicinal mushroom Hericium erinaceus, is known to play anticancer roles in human cancers. The following study aims to investigate the role of erinacine in the opening of the mitochondrial permeability transition pore (MPTP) in hepatocellular carcinoma (HCC) through the PI3K/Akt/GSK-3ß signaling pathway and highlights the applicability of erinacine in HCC treatments.

METHODS:

HCC and paracancerous tissues were obtained from 85 HCC patients who've undergone surgical resection. Immunohistochemistry was adopted to detect positive expression of PI3K, Akt, and GSK-3ß. Treatment of HepG-2 with LY294002 (an inhibitor of the PI3K/Akt/GSK-3ß signaling pathway) and different concentration of erinacine was performed to determine the involvement of LY294002 in erinacine action. The expressions of PI3K, Akt, GSK-3ß, CyclinD1, Vimentin, ß-catenin, Bcl-2, E-cadherin, Bax, and caspase-9 were determined by RT-qPCR and Western blot analysis. Cell viability, colony formation rate, migration, invasion, cycle, and apoptosis were detected by MTT, colony formation, wound healing assay, Transwell assay, and flow cytometry, respectively. The size and weight of xenograft tumors were observed in nude mice. Mitochondrial membrane potential in HepG-2 was determined using laser scanning confocal microscopy following JC-1 staining. Mitochondrial Ca2+ indicator Rhod-2, AM was used to detect the changes of mitochondrial Ca2+, while western blot analysis was employed to detect the presence levels of cytochrome C (cyt-C).

RESULTS:

The results revealed that PI3K, Akt, and GSK-3ß were up-regulated in HCC tissues. Erinacine or LY294002 led to a decrease in mitochondrial membrane potential, increase in intracellular mitochondrial Ca2+, and the release of cyt-C in mitochondria. In addition, Erinacine was found to decrease the mitochondrial membrane potential, expression of PI3K, Akt, GSK-3ß, CyclinD1, Vimentin, ß-catenin, and Bcl-2, cell proliferation, colony formation ability, migration, invasion, and xenograft tumor size, while E-cadherin, Bax, and caspase-9 expression, and cell apoptosis were elevated in a dose-dependent manner. Erinacine also stimulated the effects of LY294002 on the HCC. Following the addition of 500 µM Erinacine and MPTP opening inhibitor CsA, we found that the mitochondrial membrane potential level increased, while mitochondrial Ca2+ and Cyt-C decreased from the mitochondria.

CONCLUSION:

The results from the study demonstrated that erinacine induced MPTP opening, facilitates the release of cyt-C, and inhibited cell proliferation, migration, and invasion, while it promotes apoptosis by inactivating the PI3K/Akt/GSK-3ß signaling pathway, preventing the progression of HCC.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Carcinoma Hepatocelular / Proteínas de Transporte da Membrana Mitocondrial / Diterpenos / Neoplasias Hepáticas Limite: Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Cell Physiol Biochem Assunto da revista: BIOQUIMICA / FARMACOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Carcinoma Hepatocelular / Proteínas de Transporte da Membrana Mitocondrial / Diterpenos / Neoplasias Hepáticas Limite: Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Cell Physiol Biochem Assunto da revista: BIOQUIMICA / FARMACOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China