Your browser doesn't support javascript.
loading
Construction of Magnetoelectric Composites with a Large Room-Temperature Magnetoelectric Response through Molecular-Ionic Ferroelectrics.
Li, Dong; Zhao, Xue-Mei; Zhao, Hai-Xia; Dong, Xin-Wei; Long, La-Sheng; Zheng, Lan-Sun.
Afiliação
  • Li D; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
  • Zhao XM; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
  • Zhao HX; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
  • Dong XW; Department of Physics, Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005, P. R. China.
  • Long LS; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
  • Zheng LS; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
Adv Mater ; 30(52): e1803716, 2018 Dec.
Article em En | MEDLINE | ID: mdl-30370676
ABSTRACT
Magnetoelectric materials with a large magnetoelectric response, a low operating magnetic (or electric) field, and a room-temperature (or higher) operating temperature are of key importance for practical applications. However, such materials are extremely rare because a large magnetoelectric response often requires strong coupling between spins and electric dipoles. Herein, an example of a magnetoelectric composite is prepared by using a room-temperature multiaxial molecular-ionic ferroelectric, tetramethylammonium tetrachlorogallate(III) (1). Investigation of the magnetoelectric effect of the magnetoelectric laminate composite indicates that its room-temperature magnetoelectric voltage coefficient (αME ) is as high as 186 mV cm-1 Oe-1 at HDC = 275 Oe and at the HAC frequency of ≈39 kHz, providing a valid approach for the preparation of magnetoelectric materials and adding a new member to the magnetoelectric material family.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2018 Tipo de documento: Article