Spinor Self-Ordering of a Quantum Gas in a Cavity.
Phys Rev Lett
; 121(16): 163601, 2018 Oct 19.
Article
em En
| MEDLINE
| ID: mdl-30387632
We observe the joint spin-spatial (spinor) self-organization of a two-component Bose-Einstein condensate (BEC) strongly coupled to an optical cavity. This unusual nonequilibrium Hepp-Lieb-Dicke phase transition is driven by an off-resonant Raman transition formed from a classical pump field and the emergent quantum dynamical cavity field. This mediates a spinor-spinor interaction that, above a critical strength, simultaneously organizes opposite spinor states of the BEC on opposite checkerboard configurations of an emergent 2D lattice. The resulting spinor density-wave polariton condensate is observed by directly detecting the atomic spin and momentum state and by holographically reconstructing the phase of the emitted cavity field. The latter provides a direct measure of the spin state, and a spin-spatial domain wall is observed. The photon-mediated spin interactions demonstrated here may be engineered to create dynamical gauge fields and quantum spin glasses.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Estados Unidos