Your browser doesn't support javascript.
loading
Schottky Barrier Induced Coupled Interface of Electron-Rich N-Doped Carbon and Electron-Deficient Cu: In-Built Lewis Acid-Base Pairs for Highly Efficient CO2 Fixation.
Liu, Yong-Xing; Wang, Hong-Hui; Zhao, Tian-Jian; Zhang, Bing; Su, Hui; Xue, Zhong-Hua; Li, Xin-Hao; Chen, Jie-Sheng.
Afiliação
  • Liu YX; School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China.
  • Wang HH; School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China.
  • Zhao TJ; School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China.
  • Zhang B; School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China.
  • Su H; School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China.
  • Xue ZH; School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China.
  • Li XH; School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China.
  • Chen JS; School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China.
J Am Chem Soc ; 141(1): 38-41, 2019 Jan 09.
Article em En | MEDLINE | ID: mdl-30525578
ABSTRACT
Highly efficient fixation of CO2 for the synthesis of useful organic carbonates has drawn much attention. The design of sustainable Lewis acid-base pairs, which has mainly relied on expensive organic ligands, is the key challenge in the activation of the substrate and CO2 molecule. Here, we report the application of Mott-Schottky type nanohybrids composed of electron-deficient Cu and electron-rich N-doped carbon for CO2 fixation. A ligand-free and additive-free method was used to boost the basicity of the carbon supports and the acidity of Cu by increasing the Schottky barrier at their boundary, mimicking the beneficial function of organic ligands acting as the Lewis acid and base in metal-organic frameworks (MOFs) or polymers and simultaneously avoiding the possible deactivation associated with the necessary stability of a heterogeneous catalyst. The optimal Cu/NC-0.5 catalyst exhibited a remarkably high turnover frequency (TOF) value of 615 h-1 at 80 °C, which is 10 times higher than that of the state-of-the-art metal-based heterogeneous catalysts in the literature.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2019 Tipo de documento: Article