Clinical assessment of depth sensor based pose estimation algorithms for technology supervised rehabilitation applications.
Int J Med Inform
; 121: 30-38, 2019 01.
Article
em En
| MEDLINE
| ID: mdl-30545487
Encouraging rehabilitation by the use of technology in the home can be a cost-effective strategy, particularly if consumer-level equipment can be used. We present a clinical qualitative and quantitative analysis of the pose estimation algorithms of a typical consumer unit (Xbox One Kinect), to assess its suitability for technology supervised rehabilitation and guide development of future pose estimation algorithms for rehabilitation applications. We focused the analysis on upper-body stroke rehabilitation as a challenging use case. We found that the algorithms require improved joint tracking, especially for the shoulder, elbow and wrist joints, and exploiting temporal information for tracking when there is full or partial occlusion in the depth data.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Postura
/
Algoritmos
/
Monitorização Ambulatorial
/
Posicionamento do Paciente
/
Reabilitação do Acidente Vascular Cerebral
Tipo de estudo:
Qualitative_research
Limite:
Humans
Idioma:
En
Revista:
Int J Med Inform
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2019
Tipo de documento:
Article