Your browser doesn't support javascript.
loading
Ginsenosides Act As Positive Modulators of P2X4 Receptors.
Dhuna, Kshitija; Felgate, Matthew; Bidula, Stefan M; Walpole, Samuel; Bibic, Lucka; Cromer, Brett A; Angulo, Jesus; Sanderson, Julie; Stebbing, Martin J; Stokes, Leanne.
Afiliação
  • Dhuna K; School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology
  • Felgate M; School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology
  • Bidula SM; School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology
  • Walpole S; School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology
  • Bibic L; School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology
  • Cromer BA; School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology
  • Angulo J; School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology
  • Sanderson J; School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology
  • Stebbing MJ; School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology
  • Stokes L; School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia (K.D., B.A.C., M.J.S., L.S.); School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom (M.F., S.M.B., S.W., L.B., J.A., J.S., L.S.); Department of Chemistry and Biotechnology
Mol Pharmacol ; 95(2): 210-221, 2019 02.
Article em En | MEDLINE | ID: mdl-30545933
ABSTRACT
We investigated the selectivity of protopanaxadiol ginsenosides from Panax ginseng acting as positive allosteric modulators on P2X receptors. ATP-induced responses were measured in stable cell lines overexpressing human P2X4 using a YOPRO-1 dye uptake assay, intracellular calcium measurements, and whole-cell patch-clamp recordings. Ginsenosides CK and Rd were demonstrated to enhance ATP responses at P2X4 by ∼twofold, similar to potentiation by the known positive modulator ivermectin. Investigations into the role of P2X4 in mediating a cytotoxic effect showed that only P2X7 expression in HEK-293 cells induces cell death in response to high concentrations of ATP, and that ginsenosides can enhance this process. Generation of a P2X7-deficient clone of BV-2 microglial cells using CRISPR/Cas9 gene editing enabled an investigation of endogenous P2X4 in a microglial cell line. Compared with parental BV-2 cells, P2X7-deficient BV-2 cells showed minor potentiation of ATP responses by ginsenosides, and insensitivity to ATP- or ATP+ ginsenoside-induced cell death, indicating a primary role for P2X7 receptors in both of these effects. Computational docking to a homology model of human P2X4, based on the open state of zfP2X4, yielded evidence of a putative ginsenoside binding site in P2X4 in the central vestibule region of the large ectodomain.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ginsenosídeos / Receptores Purinérgicos P2X4 Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Pharmacol Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ginsenosídeos / Receptores Purinérgicos P2X4 Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Pharmacol Ano de publicação: 2019 Tipo de documento: Article