Your browser doesn't support javascript.
loading
The genomic basis of adaptation to high-altitude habitats in the eastern honey bee (Apis cerana).
Montero-Mendieta, Santiago; Tan, Ken; Christmas, Matthew J; Olsson, Anna; Vilà, Carles; Wallberg, Andreas; Webster, Matthew T.
Afiliação
  • Montero-Mendieta S; Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Seville, Spain.
  • Tan K; Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.
  • Christmas MJ; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
  • Olsson A; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
  • Vilà C; Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Seville, Spain.
  • Wallberg A; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
  • Webster MT; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
Mol Ecol ; 28(4): 746-760, 2019 02.
Article em En | MEDLINE | ID: mdl-30576015
The eastern honey bee (Apis cerana) is of central importance for agriculture in Asia. It has adapted to a wide variety of environmental conditions across its native range in southern and eastern Asia, which includes high-altitude regions. eastern honey bees inhabiting mountains differ morphologically from neighbouring lowland populations and may also exhibit differences in physiology and behaviour. We compared the genomes of 60 eastern honey bees collected from high and low altitudes in Yunnan and Gansu provinces, China, to infer their evolutionary history and to identify candidate genes that may underlie adaptation to high altitude. Using a combination of FST -based statistics, long-range haplotype tests and population branch statistics, we identified several regions of the genome that appear to have been under positive selection. These candidate regions were strongly enriched for coding sequences and had high haplotype homozygosity and increased divergence specifically in highland bee populations, suggesting they have been subjected to recent selection in high-altitude habitats. Candidate loci in these genomic regions included genes related to reproduction and feeding behaviour in honey bees. Functional investigation of these candidate loci is necessary to fully understand the mechanisms of adaptation to high-altitude habitats in the eastern honey bee.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Abelhas / Altitude Tipo de estudo: Prognostic_studies Limite: Animals País/Região como assunto: Asia Idioma: En Revista: Mol Ecol Assunto da revista: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Abelhas / Altitude Tipo de estudo: Prognostic_studies Limite: Animals País/Região como assunto: Asia Idioma: En Revista: Mol Ecol Assunto da revista: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Espanha