Your browser doesn't support javascript.
loading
A minimal set of physiomarkers in continuous high frequency data streams predict adult sepsis onset earlier.
van Wyk, Franco; Khojandi, Anahita; Mohammed, Akram; Begoli, Edmon; Davis, Robert L; Kamaleswaran, Rishikesan.
Afiliação
  • van Wyk F; University of Tennessee, Knoxville, TN, USA.
  • Khojandi A; University of Tennessee, Knoxville, TN, USA.
  • Mohammed A; Center for Biomedical Informatics, Department of Pediatrics, University of Tennessee Health, USA Science Center, Memphis, TN, USA.
  • Begoli E; University of Tennessee, Knoxville, TN, USA; Oak Ridge National Laboratory, Knoxville, TN, USA.
  • Davis RL; Center for Biomedical Informatics, Department of Pediatrics, University of Tennessee Health, USA Science Center, Memphis, TN, USA.
  • Kamaleswaran R; Center for Biomedical Informatics, Department of Pediatrics, University of Tennessee Health, USA Science Center, Memphis, TN, USA. Electronic address: rkamales@uthsc.edu.
Int J Med Inform ; 122: 55-62, 2019 02.
Article em En | MEDLINE | ID: mdl-30623784
PURPOSE: Sepsis is a life-threatening condition with high mortality rates and expensive treatment costs. To improve short- and long-term outcomes, it is critical to detect at-risk sepsis patients at an early stage. METHODS: A data-set consisting of high-frequency physiological data from 1161 critically ill patients was analyzed. 377 patients had developed sepsis, and had data at least 3 h prior to the onset of sepsis. A random forest classifier was trained to discriminate between sepsis and non-sepsis patients in real-time using a total of 132 features extracted from a moving time-window. The model was trained on 80% of the patients and was tested on the remaining 20% of the patients, for two observational periods of lengths 3 and 6 h prior to onset. RESULTS: The model that used continuous physiological data alone resulted in sensitivity and F1 score of up to 80% and 67% one hour before sepsis onset. On average, these models were able to predict sepsis 294.19 ± 6.50 min (5 h) before the onset. CONCLUSIONS: The use of machine learning algorithms on continuous streams of physiological data can allow for early identification of at-risk patients in real-time with high accuracy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Biomarcadores / Doenças Cardiovasculares / Sepse / Aprendizado de Máquina / Modelos Cardiovasculares Tipo de estudo: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Adolescent / Adult / Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Int J Med Inform Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Biomarcadores / Doenças Cardiovasculares / Sepse / Aprendizado de Máquina / Modelos Cardiovasculares Tipo de estudo: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Adolescent / Adult / Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Int J Med Inform Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos