Your browser doesn't support javascript.
loading
A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types.
Seif, Yara; Monk, Jonathan M; Mih, Nathan; Tsunemoto, Hannah; Poudel, Saugat; Zuniga, Cristal; Broddrick, Jared; Zengler, Karsten; Palsson, Bernhard O.
Afiliação
  • Seif Y; Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.
  • Monk JM; Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.
  • Mih N; Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.
  • Tsunemoto H; Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America.
  • Poudel S; Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.
  • Zuniga C; Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.
  • Broddrick J; Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.
  • Zengler K; Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.
  • Palsson BO; Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States of America.
PLoS Comput Biol ; 15(1): e1006644, 2019 01.
Article em En | MEDLINE | ID: mdl-30625152
S. aureus is classified as a serious threat pathogen and is a priority that guides the discovery and development of new antibiotics. Despite growing knowledge of S. aureus metabolic capabilities, our understanding of its systems-level responses to different media types remains incomplete. Here, we develop a manually reconstructed genome-scale model (GEM-PRO) of metabolism with 3D protein structures for S. aureus USA300 str. JE2 containing 854 genes, 1,440 reactions, 1,327 metabolites and 673 3-dimensional protein structures. Computations were in 85% agreement with gene essentiality data from random barcode transposon site sequencing (RB-TnSeq) and 68% agreement with experimental physiological data. Comparisons of computational predictions with experimental observations highlight: 1) cases of non-essential biomass precursors; 2) metabolic genes subject to transcriptional regulation involved in Staphyloxanthin biosynthesis; 3) the essentiality of purine and amino acid biosynthesis in synthetic physiological media; and 4) a switch to aerobic fermentation upon exposure to extracellular glucose elucidated as a result of integrating time-course of quantitative exo-metabolomics data. An up-to-date GEM-PRO thus serves as a knowledge-based platform to elucidate S. aureus' metabolic response to its environment.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Staphylococcus aureus / Genoma Bacteriano / Meios de Cultura / Biologia de Sistemas Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Staphylococcus aureus / Genoma Bacteriano / Meios de Cultura / Biologia de Sistemas Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos