Your browser doesn't support javascript.
loading
Pulmonary exposure to peat smoke extracts in rats decreases expiratory time and increases left heart end systolic volume.
Thompson, Leslie C; Kim, Yong Ho; Martin, Brandi L; Ledbetter, Allen D; Dye, Janice A; Hazari, Mehdi S; Gilmour, M Ian; Farraj, Aimen K.
Afiliação
  • Thompson LC; a US Environmental Protection Agency, Environmental Public Health Division , Durham , NC , USA.
  • Kim YH; a US Environmental Protection Agency, Environmental Public Health Division , Durham , NC , USA.
  • Martin BL; b National Research Council , Washington , DC , USA.
  • Ledbetter AD; c Oak Ridge Institute for Science and Education , Oak Ridge , TN , USA.
  • Dye JA; a US Environmental Protection Agency, Environmental Public Health Division , Durham , NC , USA.
  • Hazari MS; a US Environmental Protection Agency, Environmental Public Health Division , Durham , NC , USA.
  • Gilmour MI; a US Environmental Protection Agency, Environmental Public Health Division , Durham , NC , USA.
  • Farraj AK; a US Environmental Protection Agency, Environmental Public Health Division , Durham , NC , USA.
Inhal Toxicol ; 30(11-12): 439-447, 2018.
Article em En | MEDLINE | ID: mdl-30642191
Exposure to wildland fire-related particulate matter (PM) causes adverse health outcomes. However, the impacts of specific biomass sources remain unclear. The purpose of this study was to investigate cardiopulmonary responses in rats following exposure to PM extracts collected from peat fire smoke. We hypothesized that peat smoke PM would dose-dependently alter cardiopulmonary function. Male Sprague-Dawley rats (n = 8/group) were exposed to 35 µg (Lo PM) or 350 µg (Hi PM) of peat smoke PM extracts suspended in saline, or saline alone (Vehicle) via oropharyngeal aspiration (OA). Ventilatory expiration times, measured in whole-body plethysmographs immediately after OA, were the lowest in Hi PM exposed subjects at 6 min into recovery (p = .01 vs. Lo PM, p = .08 vs. Vehicle) and resolved shortly afterwards. The next day, we evaluated cardiovascular function in the same subjects via cardiac ultrasound under isoflurane anesthesia. Compared to Vehicle, Hi PM had 45% higher end systolic volume (p = .03) and 17% higher pulmonary artery blood flow acceleration/ejection time ratios, and both endpoints expressed significant increasing linear trends by dose (p = .01 and .02, respectively). In addition, linear trend analyses across doses detected an increase for end diastolic volume and decreases for ejection fraction and fractional shortening. These data suggest that exposure to peat smoke constituents modulates regulation of ventricular ejection and filling volumes, which could be related to altered blood flow in the pulmonary circulation. Moreover, early pulmonary responses to peat smoke PM point to irritant/autonomic mechanisms as potential drivers of later cardiovascular responses.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fumaça / Solo / Poluentes Atmosféricos / Coração / Pulmão Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Revista: Inhal Toxicol Assunto da revista: TOXICOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fumaça / Solo / Poluentes Atmosféricos / Coração / Pulmão Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Revista: Inhal Toxicol Assunto da revista: TOXICOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos