Your browser doesn't support javascript.
loading
Magnesium lithospermate B prevents phenotypic transformation of pulmonary arteries in rats with hypoxic pulmonary hypertension through suppression of NADPH oxidase.
Li, Tao; Luo, Xiu-Ju; Wang, E-Li; Li, Nian-Sheng; Zhang, Xiao-Jie; Song, Feng-Lin; Yang, Jin-Fu; Liu, Bin; Peng, Jun.
Afiliação
  • Li T; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
  • Luo XJ; Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, China.
  • Wang EL; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
  • Li NS; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
  • Zhang XJ; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
  • Song FL; Department of Cardiovascular Surgery, the Second Xiangya Hosptial, Central South University, 410011 Changsha, China.
  • Yang JF; Department of Cardiovascular Surgery, the Second Xiangya Hosptial, Central South University, 410011 Changsha, China.
  • Liu B; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China. Electronic address: liubin@csu.edu.cn.
  • Peng J; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China. Electronic address: Junpeng@csu.ed
Eur J Pharmacol ; 847: 32-41, 2019 Mar 15.
Article em En | MEDLINE | ID: mdl-30659826
Magnesium lithospermate B (MLB) shows multiple biological activities including anti-oxidation and anti-proliferation in various diseases. However, the function of MLB in pulmonary arterial hypertension (PAH) is still unknown. This study aims to investigate the effect of MLB on hypoxia-induced phenotypic transformation of pulmonary arterial smooth muscle cells (PASMCs) and the underlying mechanisms. SD rats (or PASMCs) were exposed to 10% O2 for 3 weeks (or 3% O2 for 48 h) along with MLB or NADPH oxidase (NOX) inhibitor intervention. The effects of MLB on hemodynamics, pulmonary vascular remodeling and phenotypic transformation of PASMCs were observed first. Then, its effects on the protein levels of NOX (NOX2 and NOX4), ERK and p-ERK were examined. The results showed that MLB prevented the elevation in right ventricular systolic pressure and the increase in ratio of wall thickness to vessel external diameter of pulmonary arteries in PAH rats, and attenuated phenotypic transformation of PASMCs (decrease in α-smooth muscle actin while increase in osteopontin), accompanied by downregulation of NOX (NOX2 and NOX4) protein levels, decrease of ROS and H2O2 production, and suppression of the phosphorylation of ERK. NOX inhibitor (VAS2870) achieved similar results to that of MLB did in the hypoxia-treated PASMCs. Based on the observations, we conclude that MLB is able to prevent phenotypic transformation of pulmonary arteries in hypoxic PAH rats through suppression of NOX/ROS/ERK pathway, and MLB might have the potentials in PAH therapy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Artéria Pulmonar / Medicamentos de Ervas Chinesas / NADPH Oxidases / Hipertensão Pulmonar / Magnésio / Hipóxia Limite: Animals Idioma: En Revista: Eur J Pharmacol Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Artéria Pulmonar / Medicamentos de Ervas Chinesas / NADPH Oxidases / Hipertensão Pulmonar / Magnésio / Hipóxia Limite: Animals Idioma: En Revista: Eur J Pharmacol Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China