Your browser doesn't support javascript.
loading
Molecular Insights into NR4A2(Nurr1): an Emerging Target for Neuroprotective Therapy Against Neuroinflammation and Neuronal Cell Death.
Jakaria, Md; Haque, Md Ezazul; Cho, Duk-Yeon; Azam, Shofiul; Kim, In-Su; Choi, Dong-Kug.
Afiliação
  • Jakaria M; Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea.
  • Haque ME; Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea.
  • Cho DY; Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea.
  • Azam S; Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea.
  • Kim IS; Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea.
  • Choi DK; Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences and Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea.
Mol Neurobiol ; 56(8): 5799-5814, 2019 Aug.
Article em En | MEDLINE | ID: mdl-30684217
NR4A2 is a nuclear receptor and a transcription factor, with distinctive physiological features. In the cell nuclei of the central nervous system, it is widely expressed and identified as a crucial regulator of dopaminergic (DA) neuronal differentiation, survival, and maintenance. Importantly, it has regulated different genes crucial for dopaminergic signals, and its expression has been diminished in both aged and PD post-mortem brains and reduced in PD patients. In microglia and astrocytes, the expression of NR4A2 has been found where it can be capable of inhibiting the expression of proinflammatory mediators; hence, it protected inflammation-mediated DA neuronal death. In addition, NR4A2 plays neuroprotective role via regulating different signals. However, NR4A2 has been mainly focused on Parkinson's research, but, in recent times, it has been studied in Alzheimer's disease (AD), multiple sclerosis (MS), and stroke. Altered expression of NR4A2 is connected to AD progression, and activation of its may improve cognitive function. It is downregulated in peripheral blood mononuclear cells of MS patients; nonetheless, its role in MS has not been fully clear. miR-145-5p known as a putative regulator of NR4A2 and in a middle cerebral artery occlusion/reperfusion model, anti-miR-145-5p administration promoted neurological outcomes in rat. To date, various activators and modulators of NR4A2 have been discovered and investigated as probable therapeutic drugs in neuroinflammatory and neuronal cell death models. The NR4A2 gene and cell-based therapy are described as promising drug candidates for neurodegenerative diseases. Moreover, microRNA might have a crucial role in neurodegeneration via affecting NR4A2 expression. Herein, we present the role of NR4A2 in neuroinflammation and neuronal cell death focusing on neurodegenerative conditions and display NR4A2 as a promising therapeutic target for the therapy of neuroprotection.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Fármacos Neuroprotetores / Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares / Inflamação / Neurônios Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Neurobiol Assunto da revista: BIOLOGIA MOLECULAR / NEUROLOGIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Coréia do Sul

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Fármacos Neuroprotetores / Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares / Inflamação / Neurônios Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Neurobiol Assunto da revista: BIOLOGIA MOLECULAR / NEUROLOGIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Coréia do Sul