Your browser doesn't support javascript.
loading
PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27Kip1 axis.
Tuo, Lin; Xiang, Jin; Pan, Xuanming; Hu, Jieli; Tang, Hua; Liang, Li; Xia, Jie; Hu, Yuan; Zhang, Wenlu; Huang, Ailong; Wang, Kai; Tang, Ni.
Afiliação
  • Tuo L; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.
  • Xiang J; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.
  • Pan X; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.
  • Hu J; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.
  • Tang H; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.
  • Liang L; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.
  • Xia J; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.
  • Hu Y; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.
  • Zhang W; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.
  • Huang A; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China. ahuang@cqmu.edu.cn.
  • Wang K; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China. wangkai@cqmu.edu.cn.
  • Tang N; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China. nitang@cqmu.edu.cn.
J Exp Clin Cancer Res ; 38(1): 50, 2019 Feb 04.
Article em En | MEDLINE | ID: mdl-30717766
ABSTRACT

BACKGROUND:

Altered glucose metabolism endows tumor cells with metabolic flexibility for biosynthesis requirements. Phosphoenolpyruvate carboxykinase 1 (PCK1), a key enzyme in the gluconeogenesis pathway, is downregulated in hepatocellular carcinoma (HCC) and predicts poor prognosis. Overexpression of PCK1 has been shown to suppress liver tumor growth, but the underlying mechanism remains unclear.

METHODS:

mRNA and protein expression patterns of PCK1, AMPK, pAMPK, and the CDK/Rb/E2F pathway were determined using qRT-PCR and western blotting. Cell proliferation ability and cell cycle were assessed by MTS assay and flow cytometric analysis. The effect of PCK1 on tumor growth was examined in xenograft implantation models.

RESULTS:

Both gain and loss-of-function experiments demonstrated that PCK1 deficiency promotes hepatoma cell proliferation through inactivation of AMPK, suppression of p27Kip1 expression, and stimulation of the CDK/Rb/E2F pathway, thereby accelerating cell cycle transition from the G1 to S phase under glucose-starved conditions. Overexpression of PCK1 reduced cellular ATP levels and enhanced AMPK phosphorylation and p27Kip1 expression but decreased Rb phosphorylation, leading to cell cycle arrest at G1. AMPK knockdown significantly reversed G1-phase arrest and growth inhibition of PCK1-expressing SK-Hep1 cells. In addition, the AMPK activator metformin remarkably suppressed the growth of PCK1-knockout PLC/PRF/5 cells and inhibited tumor growth in an orthotropic HCC mouse model.

CONCLUSION:

This study revealed that PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27Kip1 axis and supports a potential therapeutic and protective effect of metformin on HCC.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fosfoenolpiruvato Carboxiquinase (GTP) / Proteínas de Ligação ao Cálcio / Carcinoma Hepatocelular / Peptídeos e Proteínas de Sinalização Intracelular / Proteínas Quinases Ativadas por AMP / Pontos de Checagem da Fase G1 do Ciclo Celular / Neoplasias Hepáticas Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: J Exp Clin Cancer Res Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fosfoenolpiruvato Carboxiquinase (GTP) / Proteínas de Ligação ao Cálcio / Carcinoma Hepatocelular / Peptídeos e Proteínas de Sinalização Intracelular / Proteínas Quinases Ativadas por AMP / Pontos de Checagem da Fase G1 do Ciclo Celular / Neoplasias Hepáticas Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: J Exp Clin Cancer Res Ano de publicação: 2019 Tipo de documento: Article