Your browser doesn't support javascript.
loading
Self-Assembling Micelles Based on an Intrinsically Disordered Protein Domain.
Klass, Sarah H; Smith, Matthew J; Fiala, Tahoe A; Lee, Jess P; Omole, Anthony O; Han, Bong-Gyoon; Downing, Kenneth H; Kumar, Sanjay; Francis, Matthew B.
Afiliação
  • Klass SH; Department of Chemistry , University of California , Berkeley , California 94720 , United States.
  • Smith MJ; Department of Chemistry , University of California , Berkeley , California 94720 , United States.
  • Fiala TA; Department of Chemistry , University of California , Berkeley , California 94720 , United States.
  • Lee JP; Department of Chemistry , University of California , Berkeley , California 94720 , United States.
  • Omole AO; Department of Chemistry , University of California , Berkeley , California 94720 , United States.
  • Kumar S; Department of Bioengineering , University of California , Berkeley , California 94720 , United States.
  • Francis MB; Department of Chemistry , University of California , Berkeley , California 94720 , United States.
J Am Chem Soc ; 141(10): 4291-4299, 2019 03 13.
Article em En | MEDLINE | ID: mdl-30739445
ABSTRACT
The self-assembly of micellar structures from diblock polymers that contain hydrophilic and hydrophobic domains has been of great interest for the encapsulation of drugs and other hydrophobic molecules. While most commercially used surfactants are derived from hydrocarbon sources, there have been recent efforts to replace these with biodegradable, nontoxic, biologically synthesized alternatives. Previous examples have primarily examined naturally occurring self-assembling proteins, such as silk and elastin-like sequences. Herein, we describe a new series of fusion proteins that have been developed to self-assemble spontaneously into stable micelles that are 27 nm in diameter after enzymatic cleavage of a solubilizing protein tag. The sequences of the proteins are based on a human intrinsically disordered protein, which has been appended with a hydrophobic segment. The micelles were found to form across a broad range of pH, ionic strength, and temperature conditions, with critical micelle concentration (CMC) values in the low micromolar range, 3 orders of magnitude lower than the CMC of commonly used surfactant sodium dodecyl sulfate (SDS). The reported micelles were found to solubilize hydrophobic metal complexes and organic molecules, suggesting their potential suitability for catalysis and drug delivery applications. Furthermore, the inherent flexibility in the design of these protein sequences enables the encoding of additional functionalities for many future applications. Overall, this work represents a new biomolecular alternative to traditional surfactants that are based on nonrenewable and poorly biodegradable hydrocarbon sources.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Recombinantes de Fusão / Proteínas Intrinsicamente Desordenadas / Micelas Idioma: En Revista: J Am Chem Soc Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Recombinantes de Fusão / Proteínas Intrinsicamente Desordenadas / Micelas Idioma: En Revista: J Am Chem Soc Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos