Your browser doesn't support javascript.
loading
Gait Segmentation of Data Collected by Instrumented Shoes Using a Recurrent Neural Network Classifier.
Prado, Antonio; Cao, Xiya; Robert, Maxime T; Gordon, Andrew M; Agrawal, Sunil K.
Afiliação
  • Prado A; Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA.
  • Cao X; Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA.
  • Robert MT; Department of Biobehavioral Sciences, Teachers College, Columbia University, 525 West 120th Street, Box 93, New York, NY 10027, USA.
  • Gordon AM; Department of Biobehavioral Sciences, Teachers College, Columbia University, 525 West 120th Street, Box 93, New York, NY 10027, USA.
  • Agrawal SK; Columbia University, 500 West 120th Street, Mail Code: 4703, New York, NY 10027, USA. Electronic address: sunil.agrawal@columbia.edu.
Phys Med Rehabil Clin N Am ; 30(2): 355-366, 2019 05.
Article em En | MEDLINE | ID: mdl-30954152
The authors present a Recurrent Neural Network classifier model that segments the walking data recorded with instrumented footwear. The signals from 3 piezoresistive sensors, a 3-axis accelerometer, and Euler angles are used to generate temporal gait characteristics of a user. The model was tested using a data set collected from 28 adults containing 4198 steps. The mean errors for heel strikes and toe-offs were -5.9 ± 37.1 and 11.4 ± 47.4 milliseconds. These small errors show that the algorithm can be reliably used to segment the gait recordings and to use this segmentation to estimate temporal parameters of the subjects.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sapatos / Redes Neurais de Computação / Análise da Marcha Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Adolescent / Adult / Child / Female / Humans / Male Idioma: En Revista: Phys Med Rehabil Clin N Am Assunto da revista: MEDICINA FISICA / REABILITACAO Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sapatos / Redes Neurais de Computação / Análise da Marcha Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Adolescent / Adult / Child / Female / Humans / Male Idioma: En Revista: Phys Med Rehabil Clin N Am Assunto da revista: MEDICINA FISICA / REABILITACAO Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos