Your browser doesn't support javascript.
loading
A Novel Variant (Asn177Asp) in SPTLC2 Causing Hereditary Sensory Autonomic Neuropathy Type 1C.
Suriyanarayanan, Saranya; Othman, Alaa; Dräger, Bianca; Schirmacher, Anja; Young, Peter; Mulahasanovic, Lejla; Hörtnagel, Konstanze; Biskup, Saskia; von Eckardstein, Arnold; Hornemann, Thorsten; Lone, Museer A.
Afiliação
  • Suriyanarayanan S; Institute for Clinical Chemistry, University Hospital Zurich, University of Zurich, Wagistrasse 14 Schlieren, 8952, Zurich, Switzerland. Saranya.Suriyanarayanan@usz.ch.
  • Othman A; Competence Center for Personalized Medicine (CC-PM), Zurich, Switzerland. Saranya.Suriyanarayanan@usz.ch.
  • Dräger B; Institute for Clinical Chemistry, University Hospital Zurich, University of Zurich, Wagistrasse 14 Schlieren, 8952, Zurich, Switzerland.
  • Schirmacher A; Department of Sleep Medicine and Neuromuscular Disorders, University Hospital of Muenster, Muenster, Germany.
  • Young P; Department of Sleep Medicine and Neuromuscular Disorders, University Hospital of Muenster, Muenster, Germany.
  • Mulahasanovic L; Department of Sleep Medicine and Neuromuscular Disorders, University Hospital of Muenster, Muenster, Germany.
  • Hörtnagel K; CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany.
  • Biskup S; CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany.
  • von Eckardstein A; CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany.
  • Hornemann T; Institute for Clinical Chemistry, University Hospital Zurich, University of Zurich, Wagistrasse 14 Schlieren, 8952, Zurich, Switzerland.
  • Lone MA; Competence Center for Personalized Medicine (CC-PM), Zurich, Switzerland.
Neuromolecular Med ; 21(2): 182-191, 2019 06.
Article em En | MEDLINE | ID: mdl-30955194
ABSTRACT
Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is a rare, autosomal dominantly inherited, slowly progressive and length-dependent axonal peripheral neuropathy. HSAN1 is associated with several mutations in serine-palmitoyltransferase (SPT), the first enzyme in the de novo sphingolipid biosynthetic pathway. HSAN1 mutations alter the substrate specificity of SPT, which leads to the formation of 1-deoxysphingolipids, an atypical and neurotoxic subclass of sphingolipids. This study describes the clinical and neurophysiological phenotype of a German family with a novel SPTCL2 mutation (c.529A > G; N177D) associated with HSAN1 and the biochemical characterization of this mutation.) The mutaion was identified in five family members that segregated with the diesease. Patients were characterized genetically and clinically for neurophysiological function. Their plasma sphingolipid profiles were analyzed by LC-MS. The biochemical properties of the mutation were characterized in a cell-based activity assay. Affected family members showed elevated 1-deoxysphingolipid plasma levels. HEK293 cells expressing the N177D SPTLC2 mutant showed increased de novo 1-deoxysphingolipid formation, but also displayed elevated canonical SPT activity and increased C20 sphingoid base production. This study identifies the SPTLC2 N177D variant as a novel disease-causing mutation with increased 1-deoxySL formation and its association with a typical HSAN1 phenotype.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neuropatias Hereditárias Sensoriais e Autônomas / Mutação Puntual / Mutação de Sentido Incorreto / Serina C-Palmitoiltransferase Tipo de estudo: Observational_studies / Risk_factors_studies Limite: Female / Humans / Male Idioma: En Revista: Neuromolecular Med Assunto da revista: BIOLOGIA MOLECULAR / NEUROLOGIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Suíça

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neuropatias Hereditárias Sensoriais e Autônomas / Mutação Puntual / Mutação de Sentido Incorreto / Serina C-Palmitoiltransferase Tipo de estudo: Observational_studies / Risk_factors_studies Limite: Female / Humans / Male Idioma: En Revista: Neuromolecular Med Assunto da revista: BIOLOGIA MOLECULAR / NEUROLOGIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Suíça