Your browser doesn't support javascript.
loading
Differential proteolytic activity in Anisakis simplex s.s. and Anisakis pegreffii, two sibling species from the complex Anisakis simplex s.l., major etiological agents of anisakiasis.
Molina-Fernández, Dolores; Benítez, Rocío; Adroher, Francisco Javier; Malagón, David.
Afiliação
  • Molina-Fernández D; Departamento de Parasitología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain.
  • Benítez R; Departamento de Parasitología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain.
  • Adroher FJ; Departamento de Parasitología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain. Electronic address: fadroher@ugr.es.
  • Malagón D; Departamento de Parasitología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain.
Acta Trop ; 195: 44-50, 2019 Jul.
Article em En | MEDLINE | ID: mdl-30995435
ABSTRACT
Proteolytic activity was studied in two sibling species of Anisakis (Nematoda Anisakidae), A. simplex s.s. and A. pegreffii, throughout their in vitro development from third larval stage (L3) from the host fish (L3-0h) to fourth larval stage (L4) obtained in culture. Proteases have a significant role in the lifecycle of the parasite and in the pathogen-host relationship. Proteolytic activity peaks were detected at pH 6.0 and 8.5. Protease activity was detected in all the developmental stages of the two species studied at both pH values. These pH values were used for assaying with specific inhibitors which permitted the determination of metalloprotease activity, and, to a lesser extent, that of serine and cysteine protease. Aspartic protease activity was only detected at pH 6.0. At this pH, L4 larvae showed higher proteolytic activity than L3 larvae in both species (p < 0.001), the majority of activity being due to metalloproteases and aspartic proteases, which could be related to nutrition, especially the latter, as occurs in invertebrates. At pH 8.5, proteolytic activity was higher in A. simplex s.s. than in A. pegreffii (p < 0.01). At this pH, the majority of activity was due to metalloproteases in all developmental phases of both species, although, in L3-0h, the activity of these proteases was significantly higher (p < 0.03) in A. simplex s.s. than in A. pegreffii. This could be related to the greater invasive capacity of the former. Serine proteases have frequently been implicated in the invasive capacity and pathogenicity of some parasites. This may be related to the significantly higher activity (p ≤ 0.05) of serine protease in all the larval stages of A. simplex studied at pH 6.0. Thus, there are interspecific differences in proteases that have been related to pathogenesis in nematodes. These differences could thus be contributing to the previously reported differences in pathogenicity between these two Anisakis species.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Anisakis / Anisaquíase Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: Acta Trop Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Anisakis / Anisaquíase Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: Acta Trop Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Espanha