Your browser doesn't support javascript.
loading
Regional level influenza study based on Twitter and machine learning method.
Xue, Hongxin; Bai, Yanping; Hu, Hongping; Liang, Haijian.
Afiliação
  • Xue H; School of Information and Communication Engineering, North University of China, Taiyuan, Shanxi, 030051, People's Republic of China.
  • Bai Y; Department of Mathematics, School of Science, North University of China, Taiyuan, Shanxi, 030051, People's Republic of China.
  • Hu H; Department of Mathematics, School of Science, North University of China, Taiyuan, Shanxi, 030051, People's Republic of China.
  • Liang H; Department of Mathematics, School of Science, North University of China, Taiyuan, Shanxi, 030051, People's Republic of China.
PLoS One ; 14(4): e0215600, 2019.
Article em En | MEDLINE | ID: mdl-31013324
The significance of flu prediction is that the appropriate preventive and control measures can be taken by relevant departments after assessing predicted data; thus, morbidity and mortality can be reduced. In this paper, three flu prediction models, based on twitter and US Centers for Disease Control's (CDC's) Influenza-Like Illness (ILI) data, are proposed (models 1-3) to verify the factors that affect the spread of the flu. In this work, an Improved Particle Swarm Optimization algorithm to optimize the parameters of Support Vector Regression (IPSO-SVR) was proposed. The IPSO-SVR was trained by the independent and dependent variables of the three models (models 1-3) as input and output. The trained IPSO-SVR method was used to predict the regional unweighted percentage ILI (%ILI) events in the US. The prediction results of each model are analyzed and compared. The results show that the IPSO-SVR method (model 3) demonstrates excellent performance in real-time prediction of ILIs, and further highlights the benefits of using real-time twitter data, thus providing an effective means for the prevention and control of flu.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Surtos de Doenças / Modelos Estatísticos / Influenza Humana / Máquina de Vetores de Suporte / Mídias Sociais Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Surtos de Doenças / Modelos Estatísticos / Influenza Humana / Máquina de Vetores de Suporte / Mídias Sociais Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2019 Tipo de documento: Article