Your browser doesn't support javascript.
loading
A Threshold Switching Selector Based on Highly Ordered Ag Nanodots for X-Point Memory Applications.
Hua, Qilin; Wu, Huaqiang; Gao, Bin; Zhao, Meiran; Li, Yujia; Li, Xinyi; Hou, Xiang; Marvin Chang, Meng-Fan; Zhou, Peng; Qian, He.
Afiliação
  • Hua Q; Institute of Microelectronics Tsinghua University Beijing 100084 China.
  • Wu H; Institute of Microelectronics Tsinghua University Beijing 100084 China.
  • Gao B; Institute of Microelectronics Tsinghua University Beijing 100084 China.
  • Zhao M; Institute of Microelectronics Tsinghua University Beijing 100084 China.
  • Li Y; Institute of Microelectronics Tsinghua University Beijing 100084 China.
  • Li X; Institute of Microelectronics Tsinghua University Beijing 100084 China.
  • Hou X; State Key Laboratory of ASIC and System School of Microelectronics Fudan University Shanghai 200433 China.
  • Marvin Chang MF; Department of Electrical Engineering National Tsing Hua University Hsinchu 30013 Taiwan.
  • Zhou P; State Key Laboratory of ASIC and System School of Microelectronics Fudan University Shanghai 200433 China.
  • Qian H; Institute of Microelectronics Tsinghua University Beijing 100084 China.
Adv Sci (Weinh) ; 6(10): 1900024, 2019 May 17.
Article em En | MEDLINE | ID: mdl-31131198
ABSTRACT
Leakage interference between memory cells is the primary obstacle for enlarging X-point memory arrays. Metal-filament threshold switches, possessing excellent selectivity and low leakage current, are developed in series with memory cells to reduce sneak path current and lower power consumption. However, these selectors typically have limited on-state currents (≤10 µA), which are insufficient for memory RESET operations. Here, a strategy is proposed to achieve sufficiently large RESET current (≈2.3 mA) by introducing highly ordered Ag nanodots to the threshold switch. Compared to the Ag thin film case, Ag nanodots as active electrode could avoid excessive Ag atoms migration into solid electrolyte during operations, which causes stable conductive filament growth. Furthermore, Ag nanodots with rapid thermal processing contribute to forming multiple weak Ag filaments at a lower voltage and then spontaneous rupture as the applied voltage reduced, according to quantized conductance and simulation analysis. Impressively, the Ag nanodots based threshold switch, which is bidirectional and truly electroforming-free, demonstrates extremely high selectivity >109, ultralow leakage current <1 pA, very steep slope of 0.65 mV dec-1, and good thermal stability up to 200 °C, and further represents significant suppression of leakage currents and excellent performances for SET/RESET operations in the one-selector-one-resistor configuration.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Ano de publicação: 2019 Tipo de documento: Article