Your browser doesn't support javascript.
loading
Hydraulic control of mammalian embryo size and cell fate.
Chan, Chii Jou; Costanzo, Maria; Ruiz-Herrero, Teresa; Mönke, Gregor; Petrie, Ryan J; Bergert, Martin; Diz-Muñoz, Alba; Mahadevan, L; Hiiragi, Takashi.
Afiliação
  • Chan CJ; European Molecular Biology Laboratory, Heidelberg, Germany. cchan@embl.de.
  • Costanzo M; European Molecular Biology Laboratory, Heidelberg, Germany.
  • Ruiz-Herrero T; Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Mönke G; European Molecular Biology Laboratory, Heidelberg, Germany.
  • Petrie RJ; Department of Biology, Drexel University, Philadelphia, PA, USA.
  • Bergert M; European Molecular Biology Laboratory, Heidelberg, Germany.
  • Diz-Muñoz A; European Molecular Biology Laboratory, Heidelberg, Germany.
  • Mahadevan L; Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. lmahadev@g.harvard.edu.
  • Hiiragi T; Department of Physics, Harvard University, Cambridge, MA, USA. lmahadev@g.harvard.edu.
Nature ; 571(7763): 112-116, 2019 07.
Article em En | MEDLINE | ID: mdl-31189957
ABSTRACT
Size control is fundamental in tissue development and homeostasis1,2. Although the role of cell proliferation in these processes has been widely studied, the mechanisms that control embryo size-and how these mechanisms affect cell fate-remain unknown. Here we use the mouse blastocyst as a model to unravel a key role of fluid-filled lumen in the control of embryo size and specification of cell fate. We find that there is a twofold increase in lumenal pressure during blastocyst development, which translates into a concomitant increase in cell cortical tension and tissue stiffness of the trophectoderm that lines the lumen. Increased cortical tension leads to vinculin mechanosensing and maturation of functional tight junctions, which establishes a positive feedback loop to accommodate lumen growth. When the cortical tension reaches a critical threshold, cell-cell adhesion cannot be sustained during mitotic entry, which leads to trophectoderm rupture and blastocyst collapse. A simple theory of hydraulically gated oscillations recapitulates the observed dynamics of size oscillations, and predicts the scaling of embryo size with tissue volume. This theory further predicts that disrupted tight junctions or increased tissue stiffness lead to a smaller embryo size, which we verified by biophysical, embryological, pharmacological and genetic perturbations. Changes in lumenal pressure and size can influence the cell division pattern of the trophectoderm, and thereby affect cell allocation and fate. Our study reveals how lumenal pressure and tissue mechanics control embryo size at the tissue scale, which is coupled to cell position and fate at the cellular scale.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diferenciação Celular / Linhagem da Célula / Mecanotransdução Celular / Desenvolvimento Embrionário / Embrião de Mamíferos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Nature Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diferenciação Celular / Linhagem da Célula / Mecanotransdução Celular / Desenvolvimento Embrionário / Embrião de Mamíferos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Nature Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Alemanha