Your browser doesn't support javascript.
loading
Pathway-level information extractor (PLIER) for gene expression data.
Mao, Weiguang; Zaslavsky, Elena; Hartmann, Boris M; Sealfon, Stuart C; Chikina, Maria.
Afiliação
  • Mao W; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
  • Zaslavsky E; Carnegie Mellon-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, PA, USA.
  • Hartmann BM; Department of Neurology and Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Sealfon SC; Department of Neurology and Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Chikina M; Department of Neurology and Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Nat Methods ; 16(7): 607-610, 2019 07.
Article em En | MEDLINE | ID: mdl-31249421
A major challenge in gene expression analysis is to accurately infer relevant biological insights, such as variation in cell-type proportion or pathway activity, from global gene expression studies. We present pathway-level information extractor (PLIER) ( https://github.com/wgmao/PLIER and http://gobie.csb.pitt.edu/PLIER ), a broadly applicable solution for this problem that outperforms available cell proportion inference algorithms and can automatically identify specific pathways that regulate gene expression. Our method improves interstudy replicability and reveals biological insights when applied to trans-eQTL (expression quantitative trait loci) identification.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica / Armazenamento e Recuperação da Informação Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica / Armazenamento e Recuperação da Informação Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos