Your browser doesn't support javascript.
loading
Ocean acidification effects on in situ coral reef metabolism.
Doo, Steve S; Edmunds, Peter J; Carpenter, Robert C.
Afiliação
  • Doo SS; Department of Biology, California State University, Northridge, United States. steve.doo@csun.edu.
  • Edmunds PJ; Department of Biology, California State University, Northridge, United States.
  • Carpenter RC; Department of Biology, California State University, Northridge, United States.
Sci Rep ; 9(1): 12067, 2019 08 19.
Article em En | MEDLINE | ID: mdl-31427632
The Anthropocene climate has largely been defined by a rapid increase in atmospheric CO2, causing global climate change (warming) and ocean acidification (OA, a reduction in oceanic pH). OA is of particular concern for coral reefs, as the associated reduction in carbonate ion availability impairs biogenic calcification and promotes dissolution of carbonate substrata. While these trends ultimately affect ecosystem calcification, scaling experimental analyses of the response of organisms to OA to consider the response of ecosystems to OA has proved difficult. The benchmark of ecosystem-level experiments to study the effects of OA is provided through Free Ocean CO2 Enrichment (FOCE), which we use in the present analyses for a 21-d experiment on the back reef of Mo'orea, French Polynesia. Two natural coral reef communities were incubated in situ, with one exposed to ambient pCO2 (393 µatm), and one to high pCO2 (949 µatm). Our results show a decrease in 24-h net community calcification (NCC) under high pCO2, and a reduction in nighttime NCC that attenuated and eventually reversed over 21-d. This effect was not observed in daytime NCC, and it occurred without any effect of high pCO2 on net community production (NCP). These results contribute to previous studies on ecosystem-level responses of coral reefs to the OA conditions projected for the end of the century, and they highlight potential attenuation of high pCO2 effects on nighttime net community calcification.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Calcificação Fisiológica / Ecossistema / Antozoários / Recifes de Corais Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Calcificação Fisiológica / Ecossistema / Antozoários / Recifes de Corais Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos