Your browser doesn't support javascript.
loading
Direct electrical stimulation enhances osteogenesis by inducing Bmp2 and Spp1 expressions from macrophages and preosteoblasts.
Srirussamee, Kasama; Mobini, Sahba; Cassidy, Nigel J; Cartmell, Sarah H.
Afiliação
  • Srirussamee K; Department of Materials, The University of Manchester, Manchester, UK.
  • Mobini S; Instituto de Micro y Nanotecnología IMN-CNM, The Spanish National Research Council (CSIC), Madrid, Spain.
  • Cassidy NJ; Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.
  • Cartmell SH; Department of Civil Engineering, University of Birmingham, Birmingham, UK.
Biotechnol Bioeng ; 116(12): 3421-3432, 2019 12.
Article em En | MEDLINE | ID: mdl-31429922
The capability of electrical stimulation (ES) in promoting bone regeneration has already been addressed in clinical studies. However, its mechanism is still being investigated and discussed. This study aims to investigate the responses of macrophages (J774A.1) and preosteoblasts (MC3T3-E1) to ES and the faradic by-products from ES. It is found that pH of the culture media was not significantly changed, whereas the average hydrogen peroxide concentration was increased by 3.6 and 5.4 µM after 1 and 2 hr of ES, respectively. The upregulation of Bmp2 and Spp1 messenger RNAs was observed after 3 days of stimulation, which is consistent among two cell types. It is also found that Spp1 expression of macrophages was partially enhanced by faradic by-products. Osteogenic differentiation of preosteoblasts was not observed during the early stage of ES as the level of Runx2 expression remains unchanged. However, cell proliferation was impaired by the excessive current density from the electrodes, and also faradic by-products in the case of macrophages. This study shows that macrophages could respond to ES and potentially contribute to the bone formation alongside preosteoblasts. The upregulation of Bmp2 and Spp1 expressions induced by ES could be one of the mechanisms behind the electrically stimulated osteogenesis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoblastos / Osteogênese / Regulação da Expressão Gênica / Osteopontina / Proteína Morfogenética Óssea 2 / Macrófagos Limite: Animals Idioma: En Revista: Biotechnol Bioeng Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoblastos / Osteogênese / Regulação da Expressão Gênica / Osteopontina / Proteína Morfogenética Óssea 2 / Macrófagos Limite: Animals Idioma: En Revista: Biotechnol Bioeng Ano de publicação: 2019 Tipo de documento: Article