Your browser doesn't support javascript.
loading
Nanoscale Zero-Valent Iron and Chitosan Functionalized Eichhornia crassipes Biochar for Efficient Hexavalent Chromium Removal.
Chen, Xue-Li; Li, Feng; Xie, Xiao Jie; Li, Zhi; Chen, Long.
Afiliação
  • Chen XL; School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, China.
  • Li F; School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, China. hjlifeng@scut.edu.cn.
  • Xie XJ; School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, China.
  • Li Z; San Bernardino, California State University, San Bernardino, CA 92407, USA.
  • Chen L; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA. lo.chen@northeastern.edu.
Article em En | MEDLINE | ID: mdl-31443402
Sorption is widely used for the removal of toxic heavy metals such as hexavalent chromium (Cr(VI)) from aqueous solutions. Green sorbents prepared from biomass are attractive, because they leverage the value of waste biomass and reduce the overall cost of water treatment. In this study, we fabricated biochar (BC) adsorbent from the biomass of water hyacinth (Eichhornia crassipes), an invasive species in many river channels. Pristine BC was further modified with nanoscale zero-valent iron (nZVI) and stabilized with chitosan (C) to form C-nZVI-BC. C-nZVI-BC adsorbent showed high hexavalent chromium sorption capacity (82.2 mg/g) at pH 2 and removed 97.34% of 50 mg/L Cr(VI) from aqueous solutions. The sorption capacity of chitosan-nZVI-modified biochar decreased while increasing the solution pH value and ionic strength. The results of a sorption test indicated that multiple mechanisms accounted for Cr(VI) removal by C-nZVI-BC, including complexation, precipitation, electrostatic interactions, and reduction. Our study suggests a way of adding value to biomass waste by considering environmental treatment purposes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Carvão Vegetal / Eliminação de Resíduos Líquidos / Cromo / Eichhornia / Quitosana / Ferro Idioma: En Revista: Int J Environ Res Public Health Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Carvão Vegetal / Eliminação de Resíduos Líquidos / Cromo / Eichhornia / Quitosana / Ferro Idioma: En Revista: Int J Environ Res Public Health Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China