Your browser doesn't support javascript.
loading
Block HSIC Lasso: model-free biomarker detection for ultra-high dimensional data.
Climente-González, Héctor; Azencott, Chloé-Agathe; Kaski, Samuel; Yamada, Makoto.
Afiliação
  • Climente-González H; Institut Curie, PSL Research University, Paris, France.
  • Azencott CA; INSERM, U900, Paris, France.
  • Kaski S; MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France.
  • Yamada M; RIKEN AIP, Tokyo, Japan.
Bioinformatics ; 35(14): i427-i435, 2019 07 15.
Article em En | MEDLINE | ID: mdl-31510671
MOTIVATION: Finding non-linear relationships between biomolecules and a biological outcome is computationally expensive and statistically challenging. Existing methods have important drawbacks, including among others lack of parsimony, non-convexity and computational overhead. Here we propose block HSIC Lasso, a non-linear feature selector that does not present the previous drawbacks. RESULTS: We compare block HSIC Lasso to other state-of-the-art feature selection techniques in both synthetic and real data, including experiments over three common types of genomic data: gene-expression microarrays, single-cell RNA sequencing and genome-wide association studies. In all cases, we observe that features selected by block HSIC Lasso retain more information about the underlying biology than those selected by other techniques. As a proof of concept, we applied block HSIC Lasso to a single-cell RNA sequencing experiment on mouse hippocampus. We discovered that many genes linked in the past to brain development and function are involved in the biological differences between the types of neurons. AVAILABILITY AND IMPLEMENTATION: Block HSIC Lasso is implemented in the Python 2/3 package pyHSICLasso, available on PyPI. Source code is available on GitHub (https://github.com/riken-aip/pyHSICLasso). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Biomarcadores / Estudo de Associação Genômica Ampla Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Biomarcadores / Estudo de Associação Genômica Ampla Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: França