Your browser doesn't support javascript.
loading
Malaria risk assessment and mapping using satellite imagery and boosted regression trees in the Peruvian Amazon.
Solano-Villarreal, Elisa; Valdivia, Walter; Pearcy, Morgan; Linard, Catherine; Pasapera-Gonzales, José; Moreno-Gutierrez, Diamantina; Lejeune, Philippe; Llanos-Cuentas, Alejandro; Speybroeck, Niko; Hayette, Marie-Pierre; Rosas-Aguirre, Angel.
Afiliação
  • Solano-Villarreal E; Université de Liège, 4000, Liège, Belgium. elitayoan@gmail.com.
  • Valdivia W; Research Institute of Health and Society (IRSS), Université catholique de Louvain, 1200, Brussels, Belgium. elitayoan@gmail.com.
  • Pearcy M; Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, 15102, Peru. elitayoan@gmail.com.
  • Linard C; Ministry of Development and Social Inclusion, Lima, 15047, Peru.
  • Pasapera-Gonzales J; Research Institute of Health and Society (IRSS), Université catholique de Louvain, 1200, Brussels, Belgium.
  • Moreno-Gutierrez D; Namur Research Institute for Life Sciences (Narilis), Université de Namur, 5000, Namur, Belgium.
  • Lejeune P; Institute of Life-Earth-Environment (ILEE), 5000, Namur, Belgium.
  • Llanos-Cuentas A; National Aerospace Development Commission, Lima, 15046, Peru.
  • Speybroeck N; Research Institute of Health and Society (IRSS), Université catholique de Louvain, 1200, Brussels, Belgium.
  • Hayette MP; University of Antwerp, 2000, Antwerp, Belgium.
  • Rosas-Aguirre A; Faculty of Human Medicine, Universidad Nacional de la Amazonía Peruana, Loreto, 160, Peru.
Sci Rep ; 9(1): 15173, 2019 10 23.
Article em En | MEDLINE | ID: mdl-31645604
This is the first study to assess the risk of co-endemic Plasmodium vivax and Plasmodium falciparum transmission in the Peruvian Amazon using boosted regression tree (BRT) models based on social and environmental predictors derived from satellite imagery and data. Yearly cross-validated BRT models were created to discriminate high-risk (annual parasite index API > 10 cases/1000 people) and very-high-risk for malaria (API > 50 cases/1000 people) in 2766 georeferenced villages of Loreto department, between 2010-2017 as other parts in the article (graphs, tables, and texts). Predictors were cumulative annual rainfall, forest coverage, annual forest loss, annual mean land surface temperature, normalized difference vegetation index (NDVI), normalized difference water index (NDWI), shortest distance to rivers, time to populated villages, and population density. BRT models built with predictor data of a given year efficiently discriminated the malaria risk for that year in villages (area under the ROC curve (AUC) > 0.80), and most models also effectively predicted malaria risk in the following year. Cumulative rainfall, population density and time to populated villages were consistently the top three predictors for both P. vivax and P. falciparum incidence. Maps created using the BRT models characterize the spatial distribution of the malaria incidence in Loreto and should contribute to malaria-related decision making in the area.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Malária Falciparum / Medição de Risco / Imagens de Satélites Tipo de estudo: Diagnostic_studies / Etiology_studies / Incidence_studies / Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: America do sul / Peru Idioma: En Revista: Sci Rep Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Bélgica

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Malária Falciparum / Medição de Risco / Imagens de Satélites Tipo de estudo: Diagnostic_studies / Etiology_studies / Incidence_studies / Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: America do sul / Peru Idioma: En Revista: Sci Rep Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Bélgica