Your browser doesn't support javascript.
loading
Validation and noise robustness assessment of microscopic anisotropy estimation with clinically feasible double diffusion encoding MRI.
Kerkelä, Leevi; Henriques, Rafael Neto; Hall, Matt G; Clark, Chris A; Shemesh, Noam.
Afiliação
  • Kerkelä L; UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.
  • Henriques RN; Champalimaud Neuroscience Programme, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
  • Hall MG; UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.
  • Clark CA; National Physical Laboratory, Teddington, United Kingdom.
  • Shemesh N; UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.
Magn Reson Med ; 83(5): 1698-1710, 2020 05.
Article em En | MEDLINE | ID: mdl-31651995
ABSTRACT

PURPOSE:

Double diffusion encoding (DDE) MRI enables the estimation of microscopic diffusion anisotropy, yielding valuable information on tissue microstructure. A recent study proposed that the acquisition of rotationally invariant DDE metrics, typically obtained using a spherical "5-design," could be greatly simplified by assuming Gaussian diffusion, facilitating reduced acquisition times that are more compatible with clinical settings. Here, we aim to validate the new minimal acquisition scheme against the standard DDE 5-design, and to quantify the proposed method's noise robustness to facilitate future clinical use. THEORY AND

METHODS:

DDE MRI experiments were performed on both ex vivo and in vivo rat brains at 9.4 T using the 5-design and the proposed minimal design and taking into account the difference in the number of acquisitions. The ensuing microscopic fractional anisotropy (µFA) maps were compared over a range of b-values up to 5000 s/mm2 . Noise robustness was studied using analytical calculations and numerical simulations.

RESULTS:

The minimal protocol quantified µFA at an accuracy comparable to the estimates obtained by means of the more theoretically robust DDE 5-design. µFA's sensitivity to noise was found to strongly depend on compartment anisotropy and tensor magnitude in a nonlinear manner. When µFA < 0.75 or when mean diffusivity is particularly low, very high signal-to-noise ratio is required for precise quantification of µFA.

CONCLUSION:

Our work supports using DDE for quantifying microscopic diffusion anisotropy in clinical settings but raises hitherto overlooked precision issues when measuring µFA with DDE and typical clinical signal-to-noise ratio.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imagem de Difusão por Ressonância Magnética Tipo de estudo: Guideline Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imagem de Difusão por Ressonância Magnética Tipo de estudo: Guideline Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido