Your browser doesn't support javascript.
loading
In Situ Formed Ir3Li Nanoparticles as Active Cathode Material in Li-Oxygen Batteries.
Halder, Avik; Ngo, Anh T; Luo, Xiangyi; Wang, Hsien-Hau; Wen, J G; Abbasi, Pedram; Asadi, Mohammad; Zhang, Chengji; Miller, Dean; Zhang, Dongzhou; Lu, Jun; Redfern, Paul C; Lau, Kah Chun; Amine, Rachid; Assary, Rajeev S; Lee, Yun Jung; Salehi-Khojin, Amin; Vajda, Stefan; Amine, Khalil; Curtiss, Larry A.
Afiliação
  • Halder A; Materials Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
  • Ngo AT; Materials Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
  • Luo X; Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
  • Wang HH; Materials Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
  • Wen JG; Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
  • Abbasi P; Department of Mechanical and Industrial , University of Illinois at Chicago , Chicago , Illinois 60607 , United States.
  • Asadi M; Department of Mechanical and Industrial , University of Illinois at Chicago , Chicago , Illinois 60607 , United States.
  • Zhang C; Materials Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
  • Miller D; Department of Civil and Materials Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States.
  • Zhang D; Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
  • Lu J; Partnership for Extreme Crystallography , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
  • Redfern PC; Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
  • Lau KC; Materials Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
  • Amine R; Department of Physics and Astronomy , California State University , Northridge , California 91330 , United States.
  • Assary RS; Materials Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
  • Lee YJ; Department of Chemical Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States.
  • Salehi-Khojin A; Materials Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
  • Vajda S; Department of Engineering , Hanyang University , Seoul 133-791 , Republic of Korea.
  • Amine K; Department of Mechanical and Industrial , University of Illinois at Chicago , Chicago , Illinois 60607 , United States.
  • Curtiss LA; Materials Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
J Phys Chem A ; 123(46): 10047-10056, 2019 Nov 21.
Article em En | MEDLINE | ID: mdl-31657929
ABSTRACT
Lithium-oxygen (Li-O2) batteries are a promising class of rechargeable Li batteries with a potentially very high achievable energy density. One of the major challenges for Li-O2 batteries is the high charge overpotential, which results in a low energy efficiency. In this work size-selected subnanometer Ir clusters are used to investigate cathode materials that can help control lithium superoxide formation during discharge, which has good electronic conductivity needed for low charge potentials. It is found that Ir particles can lead to lithium superoxide formation as the discharge product with Ir particle sizes of ∼1.5 nm giving the lowest charge potentials. During discharge these 1.5 nm Ir nanoparticles surprisingly evolve to larger ones while incorporating Li to form core-shell structures with Ir3Li shells, which probably act as templates for growth of lithium superoxide during discharge. Various characterization techniques including DEMS, Raman, titration, and HRTEM are used to characterize the LiO2 discharge product and the evolution of the Ir nanoparticles. Density functional calculations are used to provide insight into the mechanism for formation of the core-shell Ir3Li particles. The in situ formed Ir3Li core-shell nanoparticles discovered here provide a new direction for active cathode materials that can reduce charge overpotentials in Li-O2 batteries.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Phys Chem A Assunto da revista: QUIMICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Phys Chem A Assunto da revista: QUIMICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos